Search results

1 – 10 of 66
Article
Publication date: 5 April 2024

Fateme Akhlaghinezhad, Amir Tabadkani, Hadi Bagheri Sabzevar, Nastaran Seyed Shafavi and Arman Nikkhah Dehnavi

Occupant behavior can lead to considerable uncertainties in thermal comfort and air quality within buildings. To tackle this challenge, the use of probabilistic controls to…

Abstract

Purpose

Occupant behavior can lead to considerable uncertainties in thermal comfort and air quality within buildings. To tackle this challenge, the use of probabilistic controls to simulate occupant behavior has emerged as a potential solution. This study seeks to analyze the performance of free-running households by examining adaptive thermal comfort and CO2 concentration, both crucial variables in indoor air quality. The investigation of indoor environment dynamics caused by the occupants' behavior, especially after the COVID-19 pandemic, became increasingly important. Specifically, it investigates 13 distinct window and shading control strategies in courtyard houses to identify the factors that prompt occupants to interact with shading and windows and determine which control approach effectively minimizes the performance gap.

Design/methodology/approach

This paper compares commonly used deterministic and probabilistic control functions and their effects on occupant comfort and indoor air quality in four zones surrounding a courtyard. The zones are differentiated by windows facing the courtyard. The study utilizes the energy management system (EMS) functionality of EnergyPlus within an algorithmic interface called Ladybug Tools. By modifying geometrical dimensions, orientation, window-to-wall ratio (WWR) and window operable fraction, a total of 465 cases are analyzed to identify effective control scenarios. According to the literature, these factors were selected because of their potential significant impact on occupants’ thermal comfort and indoor air quality, in addition to the natural ventilation flow rate. Additionally, the Random Forest algorithm is employed to estimate the individual impact of each control scenario on indoor thermal comfort and air quality metrics, including operative temperature and CO2 concentration.

Findings

The findings of the study confirmed that both deterministic and probabilistic window control algorithms were effective in reducing thermal discomfort hours, with reductions of 56.7 and 41.1%, respectively. Deterministic shading controls resulted in a reduction of 18.5%. Implementing the window control strategies led to a significant decrease of 87.8% in indoor CO2 concentration. The sensitivity analysis revealed that outdoor temperature exhibited the strongest positive correlation with indoor operative temperature while showing a negative correlation with indoor CO2 concentration. Furthermore, zone orientation and length were identified as the most influential design variables in achieving the desired performance outcomes.

Research limitations/implications

It’s important to acknowledge the limitations of this study. Firstly, the potential impact of air circulation through the central zone was not considered. Secondly, the investigated control scenarios may have different impacts on air-conditioned buildings, especially when considering energy consumption. Thirdly, the study heavily relied on simulation tools and algorithms, which may limit its real-world applicability. The accuracy of the simulations depends on the quality of the input data and the assumptions made in the models. Fourthly, the case study is hypothetical in nature to be able to compare different control scenarios and their implications. Lastly, the comparative analysis was limited to a specific climate, which may restrict the generalizability of the findings in different climates.

Originality/value

Occupant behavior represents a significant source of uncertainty, particularly during the early stages of design. This study aims to offer a comparative analysis of various deterministic and probabilistic control scenarios that are based on occupant behavior. The study evaluates the effectiveness and validity of these proposed control scenarios, providing valuable insights for design decision-making.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 6 February 2024

Nazanin Eisazadeh, Frank De Troyer and Karen Allacker

The aim is to holistically assess the environmental performance of windows and analyse how their design and characteristics contribute to the overall performance of the…

Abstract

Purpose

The aim is to holistically assess the environmental performance of windows and analyse how their design and characteristics contribute to the overall performance of the building/space. This study focuses on the performance of windows in patient rooms hosting less mobile people.

Design/methodology/approach

This study investigates the life cycle environmental impacts of different glazing types, window frames and fire safety doors at the product level. This article also presents a building-integrated environmental analysis of patient rooms that considers the multiple functionalities of windows by incorporating dynamic energy analysis, comfort and daylighting performance with a life cycle assessment (LCA) study.

Findings

The results indicate that the amount of flat glass is the main contributor to the environmental impacts of the glazing units. As for the patient rooms, global warming shows the most significant contribution to the environmental costs, followed by human toxicity, particulate matter formation and eutrophication. The key drivers for these impacts are production processes and operational energy use. This study highlights the significance of evaluating a wide range of criteria for assessing the performance of windows.

Originality/value

An integrated assessment approach is used to investigate the influence of windows on environmental performance by considering the link between window/design parameters and their effects on energy use/costs, daylighting, comfort and environmental impacts. The embodied impacts of different building elements and the influence of various design parameters on environmental performance are assessed and compared. The environmental costs are expressed as an external environmental cost (euro).

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 28 February 2023

Michela Menconi, Noel Painting and Poorang Piroozfar

The inclusion of heritage dwellings in the UK decarbonization policies can contribute to cut operational carbon emissions from the building stock; this needs to be made a priority…

78

Abstract

Purpose

The inclusion of heritage dwellings in the UK decarbonization policies can contribute to cut operational carbon emissions from the building stock; this needs to be made a priority if net zero carbon targets are to be achieved. However, the energy and carbon savings potential of suitable retrofit interventions on this part of the stock is extremely variable and strictly intertwined with the range of baseline conditions of such dwellings. This study aims to propose a framework for interventions in traditional listed dwellings (TLDs) to improve their energy performance utilizing dynamic energy simulation (DES) of selected case studies (CSs) in the city of Brighton and Hove (South-East England).

Design/methodology/approach

To achieve this aim, the study established a baseline scenario which provides a basis for the assessment of energy performance and thermo-hygrometric behaviour pre- and post-interventions and allows for comparison between different CSs under comparable conditions.

Findings

Presenting a brief overview of the methodology adopted in this study, the paper describes the approach devised to generate such baseline scenario. The paper then compares the results obtained from simulation of normalized and baseline models with the status-quo energy consumption of the dwellings investigated (based on meter readings).

Originality/value

This analysis finally allows to highlight some key physical determinants of the baseline HEC which, in the following stage of research, proved to have a considerable effect also on the amount of energy and carbon savings achievable post retrofit interventions.

Details

International Journal of Building Pathology and Adaptation, vol. 42 no. 1
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 28 February 2023

Helen Dion and Martin Evans

The issue of energy efficiency is becoming increasingly prevalent globally due to factors such as the expansion of the population, economic growth and excessive consumption that…

1210

Abstract

Purpose

The issue of energy efficiency is becoming increasingly prevalent globally due to factors such as the expansion of the population, economic growth and excessive consumption that is not sustainable in the long run. Additionally, healthcare facilities and hospitals are facing challenges as their operational costs continue to rise. The research aim is to develop strategic frameworks for managing green hospitals, towards energy efficiency and corporate governance in hospitals and healthcare facilities.

Design/methodology/approach

This research employs a qualitative case study approach, with a sample of ten hospitals examined through interviews with senior management, executives and healthcare facilities managers. Relevant data was also collected from literature and analysed through critical appraisal and content analysis. The research methodology is based on the use of grounded theory research methodologies to build theories from case studies.

Findings

The research developed three integrated conceptual strategic frameworks for managing hospitals and healthcare facilities towards energy efficiency, green hospital initiatives and corporate governance. The research also outlined the concepts of green hospitals and energy efficiency management systems and best practices based on the conclusions drawn from the investigated case studies.

Research limitations/implications

The study is limited to the initiatives and experiences of the healthcare facilities studied in the Middle East and North Africa (MENA) region.

Originality/value

The research findings, conclusions, recommendations and proposed frameworks and concepts contribute significantly to the existing body of knowledge. This research also provides recommendations for hospital managers and policymakers on how to effectively implement and manage energy efficiency initiatives in healthcare facilities.

Details

Benchmarking: An International Journal, vol. 31 no. 2
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 13 February 2024

Masoomeh Charousaei, Mohsen Faizi and Mehdi Khakzand

Visual aesthetics are a vital aspect of environmental quality. The objective of this study is to demonstrate the implementation of visibility analysis and visual quality standards…

Abstract

Purpose

Visual aesthetics are a vital aspect of environmental quality. The objective of this study is to demonstrate the implementation of visibility analysis and visual quality standards on a campus to enhance productivity and effectiveness.

Design/methodology/approach

This study has identified the most crucial and valuable metrics for evaluating the visual quality of open spaces through an analysis of theoretical foundations and relevant background information. To achieve research goal, a multi-method approach was employed, incorporating a survey, user satisfaction ratings and ISOVIST simulation techniques. Specifically, this study focused on assessing the quality of open spaces in three open areas located on the campus of the Iran University of Science and Technology.

Findings

Based on the study’s findings, the most significant factors that students considered when evaluating the visual quality of open spaces on the Iran University of Science and Technology campus were green areas, gathering spaces and architectural elements such as furniture, color and texture. Among the three open areas examined, “Open Space One” was identified as the most satisfactory location for students. According to the study, “sensory richness,” “complexity” and “mystery” were significant indicators of students' satisfaction in this area. This area also had the widest radius and field of view feasible, which gave it a feeling of openness and spaciousness.

Originality/value

This study explores the influence of students' experiences, behavioral patterns and visual analyses on their use of open spaces on university campuses, with a focus on the Iran University of Science and Technology. By assessing students' satisfaction levels with these spaces, this research provides valuable insights that can guide the initial analysis stage before the design process and facilitate design optimization during the development stages. The results highlight the importance of considering user experiences and visual analysis when planning and creating open spaces on university campuses.

Highlights

  1. Conducting an initial analysis before developing a design plan can be very helpful in understanding how users think and behave.

  2. The three criteria of visual quality that have the strongest correlation with students' satisfaction with “open space” are “mystery,” “sensory richness” and “complexity.

  3. Two factors, namely the “radius of vision” and the “area” index, significantly influence students' satisfaction with open spaces.

  4. Outdoor designers should incorporate “green space” and “gathering spaces” into their designs since the presence of these is effective in attracting and satisfying students.

  5. The number of people using an open space has little to do with how satisfied students are with it.

  6. Half of the students use open areas between 11:00 and 14:00, so the provision of “canopy” and “shelter” in these spaces is essential.

Conducting an initial analysis before developing a design plan can be very helpful in understanding how users think and behave.

The three criteria of visual quality that have the strongest correlation with students' satisfaction with “open space” are “mystery,” “sensory richness” and “complexity.

Two factors, namely the “radius of vision” and the “area” index, significantly influence students' satisfaction with open spaces.

Outdoor designers should incorporate “green space” and “gathering spaces” into their designs since the presence of these is effective in attracting and satisfying students.

The number of people using an open space has little to do with how satisfied students are with it.

Half of the students use open areas between 11:00 and 14:00, so the provision of “canopy” and “shelter” in these spaces is essential.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 26 March 2024

Wael Sheta, Mariam El Hussainy and Sahar Abdelwahab

The fundamental aim of the study is to investigate the implications of labor housing designs in Dubai, with a focus on courtyards and the governing building regulations, on…

Abstract

Purpose

The fundamental aim of the study is to investigate the implications of labor housing designs in Dubai, with a focus on courtyards and the governing building regulations, on daylight performance as an underlying factor impacting laborers’ indoor environmental quality. Several studies shed light on the subject of labor camps and labor migration in Dubai, but few have focused on the subject from the perspective of the environmental performance of these camps. A model that represents one of the labor camps was built using Rhinoceros 7.0 and Grasshopper software packages. Annual daylighting and glare simulations were carried out using the lighting modeling engine RADIANCE 5.0 in conjunction with the “ClimateStudio”.

Design/methodology/approach

The construction sector has emerged as a significant economic development driver, attracting a diverse labor force from a variety of countries to Dubai. As a result, Dubai authorities have implemented several measures to ensure the provision of suitable housing facilities for its labor force. These measures contribute to the reduction of energy costs in labor housing by encouraging the use of renewable energy. While several studies shed light on the subject of labor camps and labor migration in Dubai, few have focused on the subject from the perspective of the environmental performance of these camps.

Findings

The study provided statistical evidence that the current regulations governing courtyards in labor housing resulted in significant changes in daylight levels across different floor levels of the labor housing units. It is suggested that both 2:3 and 3:4 Court Width-to-Height ratios would further contribute to a more consistent daylight Illuminance with marginal statistical differences between floor levels (p > 0.05). The 3:4 ratio, on the other hand, offers a consistent distribution across all floor levels in the North and South with negligible variances, although weakly significant differences can be yet expected between the first and fourth floors in the East and West orientations (p < 0.05). The results of Annual Sunlight Exposure (ASE) suggest excessive solar incidence and a high probability of glare, which remains a problem that must be addressed under the governing building regulations.

Originality/value

This study could serve as a framework for analyzing and contrasting the findings of other studies on labor accommodation, notably in the Gulf Cooperation Council (GCC) countries. Such an approach has the potential to enhance living conditions in labor accommodations in Dubai and other areas. It is necessary to meet people' physical and psychological well-being while also addressing sustainability and regulatory compliance.

Details

Open House International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 21 March 2024

John Aliu, Doyin Hellen Agbaje, Ayodeji Emmanuel Oke and Andrew Ebekozien

The main objective of this study is to evaluate the driving forces behind the adoption of indoor environmental quality (IEQ) principles in building designs from the perspectives…

Abstract

Purpose

The main objective of this study is to evaluate the driving forces behind the adoption of indoor environmental quality (IEQ) principles in building designs from the perspectives of Nigerian quantity surveying firms.

Design/methodology/approach

A quantitative approach was used which involved administering a well-structured questionnaire to a sample of 114 quantity surveyors. The collected data were analyzed using various statistical methods, including frequencies, percentages, mean item scores, Kruskal–Wallis test and exploratory factor analysis.

Findings

The top five ranked drivers were climate change mitigation, conservation of natural resources, reduction of waste and pollution, use of sustainable building materials and development of new materials and building systems. Based on the factor analysis, the study identified five clusters of drivers: (1) health and well-being drivers (2) economic drivers (3) environmental drivers (4) innovation and technology drivers and (5) regulatory drivers.

Practical implications

The findings from this study suggest that to effectively integrate IEQ principles, quantity surveying firms should consider developing comprehensive guidelines and checklists that align with the identified drivers and clustered categories. These resources can serve as practical tools for project teams, facilitating a structured and holistic approach to the incorporation of IEQ factors throughout the project lifecycle.

Originality/value

The study’s identification of the top drivers and the subsequent clustering of these drivers into five distinct categories contributes to the existing body of knowledge on IEQ. This approach provides a structured framework for comprehensively understanding the factors influencing IEQ adoption, offering a valuable tool for researchers, policymakers and industry practitioners.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 28 September 2023

Ammar Chakhrit, Mohammed Bougofa, Islam Hadj Mohamed Guetarni, Abderraouf Bouafia, Rabeh Kharzi, Naima Nehal and Mohammed Chennoufi

This paper aims to enable the analysts of reliability and safety systems to evaluate the risk and prioritize failure modes ideally to prefer measures for reducing the risk of…

Abstract

Purpose

This paper aims to enable the analysts of reliability and safety systems to evaluate the risk and prioritize failure modes ideally to prefer measures for reducing the risk of undesired events.

Design/methodology/approach

To address the constraints considered in the conventional failure mode and effects analysis (FMEA) method for criticality assessment, the authors propose a new hybrid model combining different multi-criteria decision-making (MCDM) methods. The analytical hierarchy process (AHP) is used to construct a criticality matrix and calculate the weights of different criteria based on five criticalities: personnel, equipment, time, cost and quality. In addition, a preference ranking organization method for enrichment evaluation (PROMETHEE) method is used to improve the prioritization of the failure modes. A comparative work in which the robust data envelopment analysis (RDEA)-FMEA approach was used to evaluate the validity and effectiveness of the suggested approach and simplify the comparative analysis.

Findings

This work aims to highlight the real case study of the automotive parts industry. Using this analysis enables assessing the risk efficiently and gives an alternative ranking to that acquired by the traditional FMEA method. The obtained findings offer that combining of two multi-criteria decision approaches and integrating their outcomes allow for instilling confidence in decision-makers concerning the risk assessment and the ranking of the different failure modes.

Originality/value

This research gives encouraging outcomes concerning the risk assessment and failure modes ranking in order to reduce the frequency of occurrence and gravity of the undesired events by handling different forms of uncertainty and divergent judgments of experts.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 4
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 23 September 2022

Hossein Sohrabi and Esmatullah Noorzai

The present study aims to develop a risk-supported case-based reasoning (RS-CBR) approach for water-related projects by incorporating various uncertainties and risks in the…

Abstract

Purpose

The present study aims to develop a risk-supported case-based reasoning (RS-CBR) approach for water-related projects by incorporating various uncertainties and risks in the revision step.

Design/methodology/approach

The cases were extracted by studying 68 water-related projects. This research employs earned value management (EVM) factors to consider time and cost features and economic, natural, technical, and project risks to account for uncertainties and supervised learning models to estimate cost overrun. Time-series algorithms were also used to predict construction cost indexes (CCI) and model improvements in future forecasts. Outliers were deleted by the pre-processing process. Next, datasets were split into testing and training sets, and algorithms were implemented. The accuracy of different models was measured with the mean absolute percentage error (MAPE) and the normalized root mean square error (NRSME) criteria.

Findings

The findings show an improvement in the accuracy of predictions using datasets that consider uncertainties, and ensemble algorithms such as Random Forest and AdaBoost had higher accuracy. Also, among the single algorithms, the support vector regressor (SVR) with the sigmoid kernel outperformed the others.

Originality/value

This research is the first attempt to develop a case-based reasoning model based on various risks and uncertainties. The developed model has provided an approving overlap with machine learning models to predict cost overruns. The model has been implemented in collected water-related projects and results have been reported.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 2
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 27 October 2022

Sidney Newton

The purpose of this study is to highlight and demonstrate how the study of stress and related responses in construction can best be measured and benchmarked effectively.

Abstract

Purpose

The purpose of this study is to highlight and demonstrate how the study of stress and related responses in construction can best be measured and benchmarked effectively.

Design/methodology/approach

A range of perceptual and physiological measures are obtained across different time periods and during different activities in a fieldwork setting. Differences in the empirical results are analysed and implications for future studies of stress discussed.

Findings

The results of this study strongly support the use of multiple psychometrics and biosensors whenever biometrics are included in the study of stress. Perceptual, physiological and environmental factors are all shown to act in concert to impact stress. Strong conclusions on the potential drivers of stress should then only be considered when consistent results apply across multiple metrics, time periods and activities.

Research limitations/implications

Stress is an incredibly complex condition. This study demonstrates why many current applications of biosensors to study stress in construction are not up to the task and provides empirical evidence on how future studies can be significantly improved.

Originality/value

To the best of the author’s knowledge, this is the first study to focus explicitly on demonstrating the need for multiple research instruments and settings when studying stress or related conditions in construction.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 10 of 66