Search results

1 – 10 of 92
Article
Publication date: 26 June 2023

Sarah Nazari, Payam Keshavarz Mirza Mohammadi, Amirhosein Ghaffarianhoseini, Ali Ghaffarianhoseini, Dat Tien Doan and Abdulbasit Almhafdy

This paper aims to investigate the optimization of window and shading designs to reduce the building energy consumption of a standard office room while improving occupants'…

Abstract

Purpose

This paper aims to investigate the optimization of window and shading designs to reduce the building energy consumption of a standard office room while improving occupants' comfort in Tehran and Auckland.

Design/methodology/approach

The NSGA-II algorithm, as a multi-objective optimization method, is applied in this study. First, a comparison of the effects of each variable on all objectives in both cities is conducted. Afterwards, the optimal solutions and the most undesirable scenarios for each city are presented for architects and decision-makers to select or avoid.

Findings

The results indicate that, in both cities, the number of slats and their distance from the wall are the most influential variables for shading configurations. Additionally, occupants' thermal comfort in Auckland is much better than in Tehran, while the latter city can receive more daylight. Furthermore, the annual energy use in Tehran can be significantly reduced by using a proper shading device and window-to-wall ratio (WWR), while building energy consumption, especially heating, is negligible in Auckland.

Originality/value

To the best of the authors' knowledge, this is the first study that compares the differences in window and shading design between two cities, Tehran and Auckland, with similar latitudes but located in different hemispheres. The outcomes of this study can benefit two groups: firstly, architects and decision-makers can choose an appropriate WWR and shading to enhance building energy efficiency and occupants' comfort. Secondly, researchers who want to study window and shading systems can implement this approach for different climates.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 17 October 2023

Ayatallah Magdy, Ayman Hassaan Mahmoud and Ahmed Saleh

Comfortable outdoor workspaces are important for employees in business parks and urban areas. Prioritizing a pleasant thermal environment is essential for employee productivity…

Abstract

Purpose

Comfortable outdoor workspaces are important for employees in business parks and urban areas. Prioritizing a pleasant thermal environment is essential for employee productivity, as well as the improvement of outdoor spaces between office buildings to enhance social activities and quality of outdoor workplaces in a hot arid climate has been subjected to very little studies Thus, this study focuses on business parks (BPs) landscape elements. The objective of this study is to enhance the user's thermal comfort in the work environment, especially in the outdoors attached to the administrative and office buildings such as the BPs.

Design/methodology/approach

This research follows Four-phases methodology. Phase 1 is the investigation of the literature review including the Concept and consideration of BP urban planning, Achieving outdoor thermal comfort (OTC) and shading elements analysis. Phase 2 is the case study initial analysis targeting for prioritizing zones for shading involves three main methods: social assessment, geometrical assessment and environmental assessment. Phase 3 entails selecting shading elements that are suitable for the zones requiring shading parametrize the selected shading elements. Phase 4 focuses on the optimization of OTC through shading arrangements for the prioritized zones.

Findings

Shading design is a multidimensional process that requires consideration of various factors, including social aspects, environmental impact and structural integrity. Shading elements in urban areas play a crucial role in mitigating heat stress by effectively shielding surfaces from solar radiation. The integration of parametric design and computational optimization techniques enhances the shading design process by generating a wide range of alternative solutions.

Research limitations/implications

While conducting this research, it is important to acknowledge certain limitations that may affect the generalizability and scope of the findings. One significant limitation lies in the use of the shade audit method as a tool to prioritize zones for shading. Although the shade audit approach offers practical benefits for designers compared to using questionnaires, it may have its own inherent biases or may not capture the full complexity of human preferences and needs.

Originality/value

Few studies have focused on optimizing the type and location of devices that shade outdoor spaces. As a result, there is no consensus on the workflow that should regulate the design of outdoor shading installations in terms of microclimate and human thermal comfort, therefore testing parametric shading scenarios for open spaces between office buildings to increase the benefit of the outer environment is very important. The study synthesizes OTC strategies by filling the research gap through the implementation of a proper workflow that utilizes parametric thermal comfort.

Details

Open House International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 23 October 2023

Rabee Reffat and Julia Adel

This purpose of this paper is to address the problem of reducing energy consumption in existing buildings using advanced noninvasive interventions (NVIs).

Abstract

Purpose

This purpose of this paper is to address the problem of reducing energy consumption in existing buildings using advanced noninvasive interventions (NVIs).

Design/methodology/approach

The study methodology involves systematically developing and testing 18 different NVIs in six categories (glazing types, window films, external shading devices, automated internal shades, lighting systems and nanopainting) to identify the most effective individual NVIs. The impact of each individual NVI was examined on an exemplary university educational building in a hot climate zone in Egypt using a computational energy simulation tool, and the results were used to develop 39 combination scenarios of dual, triple and quadruple combinations of NVIs.

Findings

The optimal 10 combination scenarios of NVIs were determined based on achieving the highest percentages of energy reduction. The optimal percentage of energy reduction is 47.1%, and it was obtained from a combination of nanowindow film, nanopainting, LED lighting and horizontal louver external. The study found that appropriate mixture of NVIs is the most key factor in achieving the highest percentages of energy reduction.

Practical implications

These results have important implications for optimizing energy savings in existing buildings. The results can guide architects, owners and policymakers in selecting the most appropriate interventions in existing buildings to achieve the optimal reduction in energy consumption.

Originality/value

The novelty of this research unfolds in two significant ways: first, through the exploration of the potential effects arising from the integration of advanced NVIs into existing building facades. Second, it lies in the systematic development of a series of scenarios that amalgamate these NVIs, thereby pinpointing the most efficient strategies to optimize energy savings, all without necessitating any disruptive alterations to the existing building structure. These combination scenarios encompass the incorporation of both passive and active NVIs. The potential application of these diverse scenarios to a real-life case study is presented to underscore the substantial impact that these advanced NVIs can have on the energy performance of the building.

Details

Archnet-IJAR: International Journal of Architectural Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2631-6862

Keywords

Article
Publication date: 11 May 2023

Khaled El-Deeb

Window shading has always been an effective technique to control the access of solar radiation; however, inappropriate selection of the shading technique, location and optical…

Abstract

Purpose

Window shading has always been an effective technique to control the access of solar radiation; however, inappropriate selection of the shading technique, location and optical properties may lead to an increase in energy consumed for cooling and artificial lighting. Venetian blinds (VBs) are a type of adjustable shading devices that can be installed to the interior, exterior or in between glass panes of a window and that can be easily implemented in both new and existing buildings. This study aims to investigate the impact of three VB parameters: slat angle, reflectivity and location on the overall energy consumption of a residential space with a south-facing facade under the hot arid desert climate of Saudi Arabia’s capital, Riyadh. For the purpose of globalizing the findings, the same investigations were applied for two other cities of similar climates: Cairo, Egypt, and Arizona, the USA.

Design/methodology/approach

A test room was modelled for energy simulation, with a 20% window-to-wall ratio. A VB was assigned with alternatives of being located to the indoor, outdoor or in between double glass panes. High, medium and low reflectivity values were applied at each location at slat angle alternatives of 15°, 30°, 45°, 60°, 75° and 90°.

Findings

Results showed VB performance across slat angles, where up to 20.1% energy savings were achieved by mid-pane high reflectivity VBs in Riyadh, while the value exceeded 30% in case of being externally located. A similar performance pattern occurred in the other two cities of hot arid desert climates: Cairo and Arizona.

Research limitations/implications

The study is limited to VBs at a fixed position, with no upward movement for partial or full openness conditions. The effect of blind control and operation on performance, such as the amount and duration of openness/closure of the blind and changes in slat angle across time, in addition to VB automation, shall be investigated in a future study.

Practical implications

The better understanding of VB energy performance achieved would enhance a more rational selection of VBs, which would benefit the construction industry as it would assist designers, real estate developer companies, as well as end-users in the decision-making process and help to realize energy-efficient solutions in residential buildings. VB production entities would also benefit by manufacturing and promoting for energy-efficient products.

Originality/value

In this study, a matrix of combinations of three VB parameters was developed, and the effect of these combinations on the overall energy consumption of both artificial lighting and heating, ventilation and air conditioning (HVAC) systems was evaluated and compared to identify the combinations of higher efficiency. The literature showed that these three parameters were hardly investigated in a combined form and hardly assessed by considering the overall energy consumed by both artificial lighting and HVAC.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 5 April 2024

Fateme Akhlaghinezhad, Amir Tabadkani, Hadi Bagheri Sabzevar, Nastaran Seyed Shafavi and Arman Nikkhah Dehnavi

Occupant behavior can lead to considerable uncertainties in thermal comfort and air quality within buildings. To tackle this challenge, the use of probabilistic controls to…

Abstract

Purpose

Occupant behavior can lead to considerable uncertainties in thermal comfort and air quality within buildings. To tackle this challenge, the use of probabilistic controls to simulate occupant behavior has emerged as a potential solution. This study seeks to analyze the performance of free-running households by examining adaptive thermal comfort and CO2 concentration, both crucial variables in indoor air quality. The investigation of indoor environment dynamics caused by the occupants' behavior, especially after the COVID-19 pandemic, became increasingly important. Specifically, it investigates 13 distinct window and shading control strategies in courtyard houses to identify the factors that prompt occupants to interact with shading and windows and determine which control approach effectively minimizes the performance gap.

Design/methodology/approach

This paper compares commonly used deterministic and probabilistic control functions and their effects on occupant comfort and indoor air quality in four zones surrounding a courtyard. The zones are differentiated by windows facing the courtyard. The study utilizes the energy management system (EMS) functionality of EnergyPlus within an algorithmic interface called Ladybug Tools. By modifying geometrical dimensions, orientation, window-to-wall ratio (WWR) and window operable fraction, a total of 465 cases are analyzed to identify effective control scenarios. According to the literature, these factors were selected because of their potential significant impact on occupants’ thermal comfort and indoor air quality, in addition to the natural ventilation flow rate. Additionally, the Random Forest algorithm is employed to estimate the individual impact of each control scenario on indoor thermal comfort and air quality metrics, including operative temperature and CO2 concentration.

Findings

The findings of the study confirmed that both deterministic and probabilistic window control algorithms were effective in reducing thermal discomfort hours, with reductions of 56.7 and 41.1%, respectively. Deterministic shading controls resulted in a reduction of 18.5%. Implementing the window control strategies led to a significant decrease of 87.8% in indoor CO2 concentration. The sensitivity analysis revealed that outdoor temperature exhibited the strongest positive correlation with indoor operative temperature while showing a negative correlation with indoor CO2 concentration. Furthermore, zone orientation and length were identified as the most influential design variables in achieving the desired performance outcomes.

Research limitations/implications

It’s important to acknowledge the limitations of this study. Firstly, the potential impact of air circulation through the central zone was not considered. Secondly, the investigated control scenarios may have different impacts on air-conditioned buildings, especially when considering energy consumption. Thirdly, the study heavily relied on simulation tools and algorithms, which may limit its real-world applicability. The accuracy of the simulations depends on the quality of the input data and the assumptions made in the models. Fourthly, the case study is hypothetical in nature to be able to compare different control scenarios and their implications. Lastly, the comparative analysis was limited to a specific climate, which may restrict the generalizability of the findings in different climates.

Originality/value

Occupant behavior represents a significant source of uncertainty, particularly during the early stages of design. This study aims to offer a comparative analysis of various deterministic and probabilistic control scenarios that are based on occupant behavior. The study evaluates the effectiveness and validity of these proposed control scenarios, providing valuable insights for design decision-making.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 21 November 2023

Nimasha Dilukshi Hulathdoowage, Gayani Karunasena, Nilupa Udawatta and Chunlu Liu

Over the years, the significance of retrofitting has gained much attention with the unveiling of its different applications, such as energy retrofit and deep retrofit, to enhance…

Abstract

Purpose

Over the years, the significance of retrofitting has gained much attention with the unveiling of its different applications, such as energy retrofit and deep retrofit, to enhance the climate-resilience of buildings. However, no single study comprehensively assesses the climate-resilience of retrofitting. The purpose of this study is to address this gap via a systematic literature review.

Design/methodology/approach

Quality journal studies were selected using the PRISMA method and analysed manually and using scientometrics. Three dimensions of climate-resilience, such as robustness, withstanding and recovery, were used to evaluate the contribution of retrofit measures for achieving climate-resilient houses across four climate zones: tropical, arid, temperate and cold.

Findings

Most passive measures can enhance the robustness of residential buildings but cannot verify for withstanding against immediate shocks and timely recovery. However, some passive measures, such as night-time ventilation, show excellent performance over all four climate zones. Active measures such as heating, ventilation and air conditioning and mechanical ventilation with heat recovery, can ensure climate-resilience in all three dimensions in the short-term but contribute to greenhouse gas emissions, further exacerbating the long-term climate. Integrating renewable energy sources can defeat this issue. Thus, all three retrofit strategies should appropriately be adopted together to achieve climate-resilient houses.

Research limitations/implications

Since the research is limited to secondary data, retrofit measures recommended in this research should be further investigated before application.

Originality/value

This review contributes to the knowledge domain of retrofitting by assessing the contribution of different retrofit measures to climate-resilience.

Details

International Journal of Disaster Resilience in the Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1759-5908

Keywords

Article
Publication date: 8 March 2022

Adamu Muhammed, Clement Oluwole Folorunso and Gabriel Fadairo

Understanding the thermal performance of sandcrete hollow block walls in the tropic is very essential for occupants' well-being, productivity and efficiency, due to its widespread…

Abstract

Purpose

Understanding the thermal performance of sandcrete hollow block walls in the tropic is very essential for occupants' well-being, productivity and efficiency, due to its widespread application in buildings in the study area. Lokoja, in Nigeria, lies in the warm humid zone with its attendant's high temperatures all year round. Thus, providing an acceptable walling material that will control the high indoor air temperature becomes imperative. This paper assessed sandcrete hollow blocks as a walling material used in Lokoja, to determine the thermal performances for effective thermal comfort of the residents.

Design/methodology/approach

It involves the construction of a habitable model building with the commonly available sandcrete hollow blocks in the area. One unit of Cryopak iMINI Temperature and Relative Humidity Data Logger called new generation intelligent iMINI with Serial Number and Product Code MX-CI-145–0009 and MX-HE-S-16-L was installed, to record the indoor air temperature and relative humidity data at an interval of one hour, for 12 months covering dry and wet seasons. The results of the recorded data were downloaded to an excel spread sheet for assessment and analysis throughout the seasons. The values were computed using the temperature–humidity index (THI) equation, with a view to determine the indoor thermal comfort level category.

Findings

The study revealed that sandcrete hollow block walls provide thermal discomfort of the indoor environment for both seasons, with attendant adverse effects in the comfort of the occupants. The paper concludes that proper orientation of buildings, planting of trees, use of low absorbing or reflective surface materials, application of cavity walls to receive insulation materials in between the hollow spaces provided, instead of the single walling as well as providing shading device elements, can improve users' comfort and also ameliorate the heat effect on the external surface of building transferred into the interior by conduction, radiation or convection within the area and in the tropics at large. Other thermally eco-friendly wall materials available in Lokoja includes timber, stabilized laterite–cement blocks, burnt bricks and earth-mud bricks which can be used to replace sandcrete hollow block walls. These alternative wall materials are used for construction of residential and office buildings by the colonial government of Sir Fredrick Lugard in the study area.

Practical implications

The application of sandcrete hollow blocks as a wall material is in vogue, not minding its thermal discomfort to the users and the environment; this is due to its availability and ease of production. The acceptability of this walling material requires holistic study to unravel the best way to reduce the thermal discomfort inherent in its application.

Originality/value

The author succeeded in revealing the thermal performance of sandcrete hollow blocks as walling material in Lokoja, the study area. It is a first attempt at understanding the performance for human comfort in the area. This will greatly assist the resident and other researchers to improve on the application of sandcrete hollow blocks as walling material towards ensuring that maximum indoor thermal comfort is achieved.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 19 July 2023

Iftekhar Ahmed and Tanjina Khan

Fresh out of the two-century-old British legacy, Bangladesh, formerly known as East Pakistan from 1947 to 1971, was searching for a post-colonial architectural style. Colonial…

Abstract

Purpose

Fresh out of the two-century-old British legacy, Bangladesh, formerly known as East Pakistan from 1947 to 1971, was searching for a post-colonial architectural style. Colonial architecture in the region in general often imposed imported European elements, ignoring the preceding legacies of the Sultanate and the Mughals. The critical challenge was to find a balance between the prevailing high modernism in architecture and the local vernacular and climatic forces. The Pakistani government invited international architects to fill the gap left by a non-existent local architectural industry. Unfortunately, their work has rarely been properly analyzed. With selected case studies, this paper analyzes their work in an attempt to explore their contribution to creating a national architectural identity.

Design/methodology/approach

This study uses a case study approach with selected architectural projects from the period. It uses research tools such as systematic analysis of drawings, volumes and photographs and archival research.

Findings

The international architects took inspiration from the strong vernacular and climatic forces of the region. The resultant expressions of the two-decade-long search in their combined body of work are some of the finest examples of vernacular and climate-responsive architecture in the region. They transcended the regular international style and became context-specific and unique. The quest for East Pakistan's post-colonial architectural identity was partially met by the newly found identity through vernacular and climate-responsive adaptation in architecture.

Originality/value

This study explores how a unified vernacular and climate-responsive adaptations potentially shaped the post-colonial architectural identity of the region. No prior study exists on this issue for the time period.

Details

Open House International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 1 June 2023

Tamer ElSerafi

Urban mobility has substantially evolved in several western countries, shifting from interest in road expansion strategies to cater motorized movement to the emphasis on…

Abstract

Purpose

Urban mobility has substantially evolved in several western countries, shifting from interest in road expansion strategies to cater motorized movement to the emphasis on sustainable mobility. This is, however, not the case in several developing countries that still try to accommodate vehicular flows in inner historic cities. This paper aims at providing an assessment framework that helps in evaluating the effect of streetscape development on the walking and cycling environment in historic contexts.

Design/methodology/approach

This research follows a two-phase methodology. Phase 1 is the investigation of the literature review including the streetscape design, Sustainable Development Goals (SDGs) and indicators for the assessment of walking and cycling environment. This phase results in developing a set of indicators for the assessment. Phase 2 is the case study including, methods, steps and results of the assessment based on the output of Phase 1. This phase concludes with a discussion on the challenges and recommendations for the enhancement.

Findings

The streetscape development in Afrang was insufficient and negatively affected the walking and cycling environment. It was motorized-oriented, instead of enhancing green mobility. The interventions led to more crowds, safety risks and less pleasant experience. Moreover, the car users' experience was enhanced initially; however, the traffic situation did not persist. A sustainable urban mobility approach is necessary to be implemented with consideration to the global level and the relation to SDGs.

Originality/value

There is a gap in tackling the research problem both within the context of Port Said in particular and Egyptian context in general. Local authorities need a clear structured methodology to follow in the development of the streetscape. The assessment indicators gathered can be the basis for evaluating future plans.

Details

Open House International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 6 February 2024

Nazanin Eisazadeh, Frank De Troyer and Karen Allacker

The aim is to holistically assess the environmental performance of windows and analyse how their design and characteristics contribute to the overall performance of the…

Abstract

Purpose

The aim is to holistically assess the environmental performance of windows and analyse how their design and characteristics contribute to the overall performance of the building/space. This study focuses on the performance of windows in patient rooms hosting less mobile people.

Design/methodology/approach

This study investigates the life cycle environmental impacts of different glazing types, window frames and fire safety doors at the product level. This article also presents a building-integrated environmental analysis of patient rooms that considers the multiple functionalities of windows by incorporating dynamic energy analysis, comfort and daylighting performance with a life cycle assessment (LCA) study.

Findings

The results indicate that the amount of flat glass is the main contributor to the environmental impacts of the glazing units. As for the patient rooms, global warming shows the most significant contribution to the environmental costs, followed by human toxicity, particulate matter formation and eutrophication. The key drivers for these impacts are production processes and operational energy use. This study highlights the significance of evaluating a wide range of criteria for assessing the performance of windows.

Originality/value

An integrated assessment approach is used to investigate the influence of windows on environmental performance by considering the link between window/design parameters and their effects on energy use/costs, daylighting, comfort and environmental impacts. The embodied impacts of different building elements and the influence of various design parameters on environmental performance are assessed and compared. The environmental costs are expressed as an external environmental cost (euro).

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

1 – 10 of 92