Search results

1 – 10 of 423
Article
Publication date: 1 August 1998

Zoran Stjepanovic and Helena Strah

Selection of suitable sewing needle is one of the most important parameters for ensuring an effective and fault‐free sewing process. This task requires good knowledge of basic…

742

Abstract

Selection of suitable sewing needle is one of the most important parameters for ensuring an effective and fault‐free sewing process. This task requires good knowledge of basic characteristics of a sewing needle, i.e. needle type, point shape and needle fineness. Also good knowledge of sewing materials is required. The contribution presents an analysis of important parameters that influence the sewing needle selection in women’s underwear production. The importance of those parameters in ensuring the appropriate seam quality is described. The selection of a suitable sewing needle was carried out on the basis of analysis of influential sewing parameters with application of machine learning from examples.

Details

International Journal of Clothing Science and Technology, vol. 10 no. 3/4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 December 1999

Evangelos Liasi, Ruxu Du, Dan Simon, Jasmina Bujas‐Dimitrejevic and Frank Liburdi

This paper presents an experimental study on needle heating in sewing heavy materials such as upholstery fabrics. In the experiments, infrared (IR) radiometry, high speed line…

Abstract

This paper presents an experimental study on needle heating in sewing heavy materials such as upholstery fabrics. In the experiments, infrared (IR) radiometry, high speed line scanning IR radiometry, and high speed IR radiometry are used to obtain thermal images of the needle during sewing. In particular, IR radiometry was used in lower speed sewing (approximately 500rpm). High speed IR and high speed line scanning IR radiometry were used for medium speed sewing (1,000‐2,000rpm). Using Taguchi’s design of experiment method, the effects of various factors are studied including needle conditions (sharp or blunt), sewing speeds, number of stitches per inch, material being sewn, and thread tension. It is found that even with air vortex cooling the needle may still reach high enough temperatures that may affect the sewing quality and even cause thread breakage. This was confirmed via a thread tensile testing experiment. An empirical model of the mean needle temperature is also proposed and tested.

Details

International Journal of Clothing Science and Technology, vol. 11 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 8 May 2018

Awadhesh Kumar Choudhary, Monica Puri Sikka and Payal Bansal

The purpose of this review paper is to define the dominating factors (such as fiber, yarn, fabric structure, sewing thread, sewing needle and machine parameters) that affect the…

Abstract

Purpose

The purpose of this review paper is to define the dominating factors (such as fiber, yarn, fabric structure, sewing thread, sewing needle and machine parameters) that affect the seam damages and causing defects. It also describes the various explanations of sewing defects in garment production and critically analyzes them for optimum selection of parameters and speeds for minimizing such faults. Hence, the knowledge of various factors which affect the sewing damages/defects will be helpful for garment manufacturers/researchers to know influence of the parameters and control the quality of producing seam.

Design/methodology/approach

This section is not applicable for a review paper.

Findings

Sewing damages such as needle cut and other sewing damages/defects are studied mostly in woven fabric. There are very few studies conducted on knitted fabric sewing damages/defects. The sewing damage problems do not have single solution that is capable of removing these damages in fabric. All the determined and affecting parameters related to fiber, yarn, fabric construction, sewing thread and sewing machine must be examined to design appropriate remedial measurement related to machine design, fabric parameters and sewing thread. This could help in minimizing or eliminating the needle cut and other sewing damage problems.

Originality/value

It is an original review work and is helpful for garment manufacturers/researchers to reduce the defects and be able to produce good quality seam.

Details

Research Journal of Textile and Apparel, vol. 22 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 1 March 1999

Eric Mallet and Ruxu Du

Sewing is one of the most commonly used manufacturing processes in the world. Millions of parts are sewn every day ranging from cloths, shoes, furniture, to automobile seat…

Abstract

Sewing is one of the most commonly used manufacturing processes in the world. Millions of parts are sewn every day ranging from cloths, shoes, furniture, to automobile seat covers. However, it is also one of the least understood processes. In fact, according to literature survey, few know how to calculate the sewing force or the fabric deformation during the sewing. This paper presents our research on using finite element model (FEM) to study the sewing process. The model is developed using ANSYS software system. In the model, the fabric is approximated by a number of perpendicular beam elements with elastic and plastic capabilities. On the other hand, the needle is modeled by a simple elastic beam. The contact between the two parts is modeled by contact elements. The variations of the needle geometry and the fabric material properties as well as the sewing conditions are also included in the model. The model can simulate the needle piercing through a material, and calculates the sewing forces as well as the fabric deformation forming a hole. It has been verified experimentally and can be used to study the effects of the key sewing parameters such as the fabric material properties and the needle geometry.

Details

International Journal of Clothing Science and Technology, vol. 11 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 20 May 2022

Esra Zeynep Yıldız and Oktay Pamuk

This paper suggests a new method for determining the sewing damage that occurs in single jersey fabrics based on the calculation of the needle hole area. This paper also aims to…

Abstract

Purpose

This paper suggests a new method for determining the sewing damage that occurs in single jersey fabrics based on the calculation of the needle hole area. This paper also aims to investigate the effects of material type, sewing parameters, and repeated washing cycles on sewing damage by using this method.

Design/methodology/approach

Six knitted fabrics, differing in structure and raw material, were produced. Samples were sewn using different sewing parameters, and they were subjected to ten washing cycles. Values of average needle hole area, an objective indicator of sewing damage, were calculated before and after repeated washing cycles using image analysis software and were evaluated statistically.

Findings

The results showed that the average needle hole area calculated via the image analysis software effectively estimates sewing damage as the results obtained were compatible with those stated in the literature. Furthermore, fabric type, sewing direction, sewing thread type, and needle size significantly affected the sewing damage. However, stitch density did not affect the sewing damage. When the effect of washing cycles was compared, it was seen that washing leads to an increase in sewing damage.

Originality/value

A review of the existing literature shows that no previous study has evaluated sewing damage using image analysis software. This study proposes a novel objective method to determine the sewing damage that occurs in knitted fabrics.

Details

International Journal of Clothing Science and Technology, vol. 34 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 October 2021

Esra Zeynep Yıldız and Oktay Pamuk

The conversion of fabric into a garment involves many interactions such as the selection of suitable sewing thread, optimization of sewing parameters, ease of conversion of fabric…

Abstract

Purpose

The conversion of fabric into a garment involves many interactions such as the selection of suitable sewing thread, optimization of sewing parameters, ease of conversion of fabric into the garment and actual performance of the sewn fabric during wear of the garment. The adjustment of all sewing parameters is necessary to ensure quality. The purpose of this paper is to define the parameters that affect seam quality comprehensively.

Design/methodology/approach

This study primarily focuses on the studies dealing with the effect of various parameters on-seam quality in detail. A systematic literature review was conducted.

Findings

The interactions between parameters may lead to different results than the effect of a single parameter. In addition, changing some parameters may have a positive effect on one element of seam quality while having a negative effect on another. For this reason, it is very important to properly select the parameters according to the specific end use of the garment products and also to consider the interactions.

Originality/value

The knowledge of various factors that affect seam quality will be helpful for manufacturers to improve production performance and to be able to produce high-quality seam.

Details

Research Journal of Textile and Apparel, vol. 25 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 1 February 1997

J. Fan

Sewing damage is caused by the resistance of fabric to the penetration of sewing needle during sewing. Such resistance not only comes from the fact that the spaces in the fabric…

Abstract

Sewing damage is caused by the resistance of fabric to the penetration of sewing needle during sewing. Such resistance not only comes from the fact that the spaces in the fabric (between the fibres or the yams) are relatively small to the size of the sewing needle, but also comes from the congestion in the needle gap as a result of the fabric materials (viz. fibres and yarns) being pushed into the needle gap (i.e. the gap or hole in the throat plate of the sewing machine, through which the needle passes when penetrating the fabric) during sewing. Therefore, the size and design of the needle gap is very important to the elimination of sewing damage. In the work reported on in this paper, throat plates of different needle gap sizes were designed and the effect of needle gap on sewing damage was investigated. It was found that needle plate having optimum needle gap size can minimise sewing problems.

Details

Research Journal of Textile and Apparel, vol. 1 no. 1
Type: Research Article
ISSN: 1560-6074

Article
Publication date: 27 May 2014

Saeed Ebrahimi and Pedram Payvandy

The purpose of this paper is to present, an optimization problem based on the imperialistic competitive algorithm (ICA) approach for optimizing the needle velocity and variation…

Abstract

Purpose

The purpose of this paper is to present, an optimization problem based on the imperialistic competitive algorithm (ICA) approach for optimizing the needle velocity and variation of needle acceleration in a link drive mechanism of a sewing machine. The optimal geometry of the link drive has been achieved using a non-linear optimization procedure.

Design/methodology/approach

As an important study in this case, the authors might refer to a previous work in which they introduced the possibility of replacing the slider-crank mechanism, that is typically used in sewing machines, with a link drive mechanism. The authors regenerate the optimization problem by modifying the objective function and follow a novel optimization method based on the ICA to overcome the drawbacks of that work. In addition, further modification of the objective function with respect to the variation of needle acceleration is applied to assure smooth movement of the needle during sewing process.

Findings

The results showed a significant improvement with respect to the optimization of needle velocity and variation of needle acceleration in comparison to that previous work. This clearly justifies the efficiency and reliability of the optimization formulation based on the ICA approach.

Originality/value

Needle temperature is considered as an effective parameter on sewing process efficiency and stitch quality. Needle heat generated during sewing process is directly related to needle velocity in penetration zone which in turn depends on the needle driver mechanism of sewing machine. According to literature survey, few researches have focussed to design a driver mechanism of the sewing machine to reduce the generated needle heat. This mechanism has the ability of reducing the penetration velocity of the needle without affecting sewing speed which consequently can reduce the needle heat generated during needle penetration. The work here is novel regarding implementation of optimization algorithm for this mechanism.

Details

International Journal of Clothing Science and Technology, vol. 26 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 April 2001

Qinwen Li, Evangelos Liasi, Hui‐Jun Zou and R. Du

In heavy industrial sewing, needle heating has become a serious problem that limits the further increase of the sewing speed, and hence the productivity. The high temperature in…

Abstract

In heavy industrial sewing, needle heating has become a serious problem that limits the further increase of the sewing speed, and hence the productivity. The high temperature in the needle can degrade the strength of the thread. At the same, it may cause the wear of the needle eye, which would further damage the thread. It can also scorch the fabric, as well as temper and weaken the needle itself. Therefore, it is important to develop a model that can predict the needle heating and, hence, find remedies to minimize its effects. According to a literature survey, most research on needle heating focuses on experimental methods, such as infrared radiometry, infrared pyrometry, etc. This paper is the first part of our research on needle heating. In this paper, two analytical models are presented: the sliding contact model and the lumped variable model. These models are relatively simple and easy to use. Given needle geometry, sewing condition, and fabric characteristic, they can predict the needle temperature rise starting from initial heating to steady state. The simulation results are rather accurate. Hence, the models can be used to quickly identify the potential needle heating problems on the shop floor. In Part 2 of our study, a finite element analysis (FEA) model is presented together with the experiment results.

Details

International Journal of Clothing Science and Technology, vol. 13 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 August 1997

Karl Gotlih

Demonstrates the modelling of the kinetic process when the sewing needle enters the fabric. To get an adequate mechanical model of the given problem, the function ‐ the…

1021

Abstract

Demonstrates the modelling of the kinetic process when the sewing needle enters the fabric. To get an adequate mechanical model of the given problem, the function ‐ the mathematical model ‐ of the penetration force with respect to the fabric, the needle and the mechanism in the sewing machine must be developed. The fabric was modelled as a combination of warp and weft threads. Each thread from the fabric is modelled as an ideal elastic Hook’s material. Outlines the restrictions which needed to be made to get the mathematical model of the problem.

Details

International Journal of Clothing Science and Technology, vol. 9 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 423