Search results

1 – 10 of over 34000
Article
Publication date: 17 September 2008

Randolph C. Rach

To provide a new proof of convergence of the Adomian decomposition series for solving nonlinear ordinary and partial differential equations based upon a thorough examination of…

1383

Abstract

Purpose

To provide a new proof of convergence of the Adomian decomposition series for solving nonlinear ordinary and partial differential equations based upon a thorough examination of the historical milieu preceding the Adomian decomposition method.

Design/methodology/approach

Develops a theoretical background of the Adomian decomposition method under the auspices of the Cauchy‐Kovalevskaya theorem of existence and uniqueness for solution of differential equations. Beginning from the concepts of a parametrized Taylor expansion series as previously introduced in the Murray‐Miller theorem based on analytic parameters, and the Banach‐space analog of the Taylor expansion series about a function instead of a constant as briefly discussed by Cherruault et al., the Adomian decompositions series and the series of Adomian polynomials are found to be a uniformly convergent series of analytic functions for the solution u and the nonlinear composite function f(u). To derive the unifying formula for the family of classes of Adomian polynomials, the author develops the novel notion of a sequence of parametrized partial sums as defined by truncation operators, acting upon infinite series, which induce these parametrized sums for simple discard rules and appropriate decomposition parameters. Thus, the defining algorithm of the Adomian polynomials is the difference of these consecutive parametrized partial sums.

Findings

The four classes of Adomian polynomials are shown to belong to a common family of decomposition series, which admit solution by recursion, and are derived from one unifying formula. The series of Adomian polynomials and hence the solution as computed as an Adomian decomposition series are shown to be uniformly convergent. Furthermore, the limiting value of the mth Adomian polynomial approaches zero as the index m approaches infinity for the prerequisites of the Cauchy‐Kovalevskaya theorem. The novel truncation operators as governed by discard rules are analogous to an ideal low‐pass filter, where the decomposition parameters represent the cut‐off frequency for rearranging a uniformly convergent series so as to induce the parametrized partial sums.

Originality/value

This paper unifies the notion of the family of Adomian polynomials for solving nonlinear differential equations. Further it presents the new notion of parametrized partial sums as a tool for rearranging a uniformly convergent series. It offers a deeper understanding of the elegant and powerful Adomian decomposition method for solving nonlinear ordinary and partial differential equations, which are of paramount importance in modeling natural phenomena and man‐made device performance parameters.

Details

Kybernetes, vol. 37 no. 7
Type: Research Article
ISSN: 0368-492X

Keywords

Abstract

Details

The Theory of Monetary Aggregation
Type: Book
ISBN: 978-0-44450-119-6

Article
Publication date: 14 June 2022

Aziz Kaba, Ece Yurdusevimli Metin and Onder Turan

The purpose of this study is to build a high accuracy thrust model under various small turbojet engine shaft speeds by using robust, ordinary, linear and nonlinear least squares…

108

Abstract

Purpose

The purpose of this study is to build a high accuracy thrust model under various small turbojet engine shaft speeds by using robust, ordinary, linear and nonlinear least squares estimation methods for target drone applications.

Design/methodology/approach

The dynamic shaft speeds from the test experiment of a target drone engine is conducted. Then, thrust values are calculated. Based on these, the engine thrust is modeled by robust linear and nonlinear equations. The models are benefited from quadratic, power and various series expansion functions with several coefficients to optimize the model parameters.

Findings

The error terms and accuracy of the model are given using sum of squared errors, root mean square error (RMSE) and R-squared (R2) error definitions. Based on the multiple analyses, it is seen that the RMSE values are no more than 17.7539 and the best obtained result for robust least squares estimation is 15.0086 for linear at all cases. Furthermore, the R2 value is found to be 0.9996 as the highest with the nonlinear Fourier series expansion model.

Originality/value

The motivation behind this paper is to propose robust nonlinear thrust models based on power, Fourier and various series expansion functions for dynamic shaft speeds from the test experiments.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Abstract

Details

Applying Maximum Entropy to Econometric Problems
Type: Book
ISBN: 978-0-76230-187-4

Article
Publication date: 4 September 2018

Muhannad Aldosary, Jinsheng Wang and Chenfeng Li

This paper aims to provide a comprehensive review of uncertainty quantification methods supported by evidence-based comparison studies. Uncertainties are widely encountered in…

Abstract

Purpose

This paper aims to provide a comprehensive review of uncertainty quantification methods supported by evidence-based comparison studies. Uncertainties are widely encountered in engineering practice, arising from such diverse sources as heterogeneity of materials, variability in measurement, lack of data and ambiguity in knowledge. Academia and industries have long been researching for uncertainty quantification (UQ) methods to quantitatively account for the effects of various input uncertainties on the system response. Despite the rich literature of relevant research, UQ is not an easy subject for novice researchers/practitioners, where many different methods and techniques coexist with inconsistent input/output requirements and analysis schemes.

Design/methodology/approach

This confusing status significantly hampers the research progress and practical application of UQ methods in engineering. In the context of engineering analysis, the research efforts of UQ are most focused in two largely separate research fields: structural reliability analysis (SRA) and stochastic finite element method (SFEM). This paper provides a state-of-the-art review of SRA and SFEM, covering both technology and application aspects. Moreover, unlike standard survey papers that focus primarily on description and explanation, a thorough and rigorous comparative study is performed to test all UQ methods reviewed in the paper on a common set of reprehensive examples.

Findings

Over 20 uncertainty quantification methods in the fields of structural reliability analysis and stochastic finite element methods are reviewed and rigorously tested on carefully designed numerical examples. They include FORM/SORM, importance sampling, subset simulation, response surface method, surrogate methods, polynomial chaos expansion, perturbation method, stochastic collocation method, etc. The review and comparison tests comment and conclude not only on accuracy and efficiency of each method but also their applicability in different types of uncertainty propagation problems.

Originality/value

The research fields of structural reliability analysis and stochastic finite element methods have largely been developed separately, although both tackle uncertainty quantification in engineering problems. For the first time, all major uncertainty quantification methods in both fields are reviewed and rigorously tested on a common set of examples. Critical opinions and concluding remarks are drawn from the rigorous comparative study, providing objective evidence-based information for further research and practical applications.

Details

Engineering Computations, vol. 35 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 October 2014

Ying-Shieh Kung, Ming-Kuang Wu, Hai Linh Bui Thi and, Tz-Han Jung, Feng-Chi Lee and Wen-Chuan Chen

The inverse kinematics in robot manipulator have to handle the arctangent and arccosine function. However, the two functions are complicated and need much computation time so that…

Abstract

Purpose

The inverse kinematics in robot manipulator have to handle the arctangent and arccosine function. However, the two functions are complicated and need much computation time so that it is difficult to be realized in the typical processing system. The purpose of this paper is to solve this problem by using Field Programmable Gate Array (FPGA) to speed up the computation power.

Design/methodology/approach

The Taylor series expansion method is firstly applied to transfer arctangent and arccosine function to a polynomial form. And Look-Up Table (LUT) is used to store the parameters of the polynomial form. Then the behavior of the computation algorithm is described by Very high-speed IC Hardware Description Language (VHDL) and a co-simulation using ModelSim and Simulink is applied to evaluate the correctness of the VHDL code.

Findings

The computation time of arctangent and arccosine function using by FPGA need only 320 and 420 ns, respectively, and the accuracy is <0.01°.

Practical implications

Fast computation in arctangent and arccosine function can speed up the motion response of the real robot system when it needs to perform the inverse kinematics function.

Originality/value

This is the first time such to combine the Taylor series method and LUT method in the computation the arctangent and arccosine function as well as to implement it with FPGA.

Details

Engineering Computations, vol. 31 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 31 August 2021

Frédérique Le Louër and María-Luisa Rapún

In this paper, the authors revisit the computation of closed-form expressions of the topological indicator function for a one step imaging algorithm of two- and three-dimensional…

Abstract

Purpose

In this paper, the authors revisit the computation of closed-form expressions of the topological indicator function for a one step imaging algorithm of two- and three-dimensional sound-soft (Dirichlet condition), sound-hard (Neumann condition) and isotropic inclusions (transmission conditions) in the free space.

Design/methodology/approach

From the addition theorem for translated harmonics, explicit expressions of the scattered waves by infinitesimal circular (and spherical) holes subject to an incident plane wave or a compactly supported distribution of point sources are available. Then the authors derive the first-order term in the asymptotic expansion of the Dirichlet and Neumann traces and their surface derivatives on the boundary of the singular medium perturbation.

Findings

As the shape gradient of shape functionals are expressed in terms of boundary integrals involving the boundary traces of the state and the associated adjoint field, then the topological gradient formulae follow readily.

Originality/value

The authors exhibit singular perturbation asymptotics that can be reused in the derivation of the topological gradient function that generates initial guesses in the iterated numerical solution of any shape optimization problem or imaging problems relying on time-harmonic acoustic wave propagation.

Details

Engineering Computations, vol. 39 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 2013

Randolph Rach, Abdul‐Majid Wazwaz and Jun‐Sheng Duan

The purpose of this paper is to propose a new modification of the Adomian decomposition method for resolution of higher‐order inhomogeneous nonlinear initial value problems.

Abstract

Purpose

The purpose of this paper is to propose a new modification of the Adomian decomposition method for resolution of higher‐order inhomogeneous nonlinear initial value problems.

Design/methodology/approach

First the authors review the standard Adomian decomposition scheme and the Adomian polynomials for solving nonlinear differential equations. Next, the advantages of Duan's new algorithms and subroutines for fast generation of the Adomian polynomials to high orders are discussed. Then algorithms are considered for the solution of a sequence of first‐, second‐, third‐ and fourth‐order inhomogeneous nonlinear initial value problems with constant system coefficients by the new modified recursion scheme in order to derive a systematic algorithm for the general case of higher‐order inhomogeneous nonlinear initial value problems.

Findings

The authors investigate seven expository examples of inhomogeneous nonlinear initial value problems: the exact solution was known in advance, in order to demonstrate the rapid convergence of the new approach, including first‐ through sixth‐order derivatives and quadratic, cubic, quartic and exponential nonlinear terms in the solution and a sextic nonlinearity in the first‐order derivative. The key difference between the various modified recursion schemes is the choice of the initial solution component, using different choices to partition and delay the subsequent parts through the recursion steps. The authors' new approach extends this concept.

Originality/value

The new modified decomposition method provides a significant advantage for computing the solution's Taylor expansion series, both systematically and rapidly, as demonstrated in the various expository examples.

Article
Publication date: 1 June 1996

G. Miano, G. Panariello, V.G. Vaccaro and L. Verolino

Discusses an analytical solution for the capacitance of the circular microstrip patch resonator. Shows that the electrostatic problem can be formulated as a system of dual…

230

Abstract

Discusses an analytical solution for the capacitance of the circular microstrip patch resonator. Shows that the electrostatic problem can be formulated as a system of dual integral equations, which is reduced to a single Fredholm integral equation of the second kind with a continuous kernel. Discusses the solution of this new integral equation in a certain range of the parameters, and derives some useful formulas for the capacitance. Finally, gives plots of the capacitance in a wide range of the relative permittivity.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 15 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 24 April 2007

Göran Johansson and Magnus Ekh

This paper aims to speed up finite element analyses of structures with a highly nonlinear material response subjected to many loading cycles.

Abstract

Purpose

This paper aims to speed up finite element analyses of structures with a highly nonlinear material response subjected to many loading cycles.

Design/methodology/approach

An approach where large time increments are taken in an adaptive fashion is presented. The size of the large time increments typically spans several loading cycles and is based on Taylor series expansions of the response combined with error control.

Findings

The suggested adaptive algorithm is simple compared with some well‐known alternatives in the literature. It also has the inherent convergence property that it reduces to the classical time incrementation in the case where the estimated error is too large.

Research limitations/implications

The algorithm is suitable for (restricted to) a special class of problems where the material response versus a representative time sequence are smooth curves. The simplicity of the method results in a robust algorithm.

Originality/value

Similar algorithms have been presented earlier in the literature but the present work introduces some enhancements, e.g. accounting for general internal variables also in the error estimate. In addition, the present work considers a more complex constitutive model compared with earlier work within the research field.

Details

Engineering Computations, vol. 24 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 34000