Search results

1 – 10 of 681
Article
Publication date: 18 January 2024

Arish Ibrahim and Gulshan Kumar

This study aims to explore the integration of Industry 4.0 technologies with lean six sigma practices in the manufacturing sector for enhanced process improvement.

Abstract

Purpose

This study aims to explore the integration of Industry 4.0 technologies with lean six sigma practices in the manufacturing sector for enhanced process improvement.

Design/methodology/approach

This study used a fuzzy decision-making trial and evaluation laboratory approach to identify critical Industry 4.0 technologies that can be harmonized with Lean Six Sigma methodologies for achieving improved processes in manufacturing.

Findings

The research reveals that key technologies such as modeling and simulation, artificial intelligence (AI) and machine learning, big data analytics, automation and industrial robots and smart sensors are paramount for achieving operational excellence when integrated with Lean Six Sigma.

Research limitations/implications

The study is limited to the identification of pivotal Industry 4.0 technologies for Lean Six Sigma integration in manufacturing. Further studies can explore the implementation challenges and the quantifiable benefits of such integrations.

Practical implications

Integrating Industry 4.0 technologies with Lean Six Sigma enhances manufacturing efficiency. This approach leverages AI for predictive analysis, uses smart sensors for energy efficiency and adaptable robots for flexible production. It is vital for competitive advantage, significantly improving decision-making, reducing costs and streamlining operations in the manufacturing sector.

Social implications

The integration of Industry 4.0 technologies with Lean Six Sigma in manufacturing has significant social implications. It promotes job creation in high-tech sectors, necessitating advanced skill development and continuous learning among the workforce. This shift fosters an innovative, knowledge-based economy, potentially reducing the skills gap. Additionally, it enhances workplace safety through automation, reduces hazardous tasks for workers and contributes to environmental sustainability by optimizing resource use and reducing waste in manufacturing processes.

Originality/value

This study offers a novel perspective on synergizing advanced Industry 4.0 technologies with established Lean Six Sigma practices for enhanced process improvement in manufacturing. The findings can guide industries in prioritizing their technological adoptions for continuous improvement.

Details

International Journal of Lean Six Sigma, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-4166

Keywords

Open Access
Article
Publication date: 1 December 2022

Azzah Al-Maskari, Thuraya Al Riyami and Sami Ghnimi

Knowing the students' readiness for the fourth industrial revolution (4IR) is essential to producing competent, knowledgeable and skilled graduates who can contribute to the…

4751

Abstract

Purpose

Knowing the students' readiness for the fourth industrial revolution (4IR) is essential to producing competent, knowledgeable and skilled graduates who can contribute to the skilled workforce in the country. This will assist the Higher Education Institutions (HEIs) to ensure that their graduates own skill sets needed to work in the 4IR era. However, studies on students' readiness and preparedness for the 4IR in developing countries such as the Sultanate of Oman are still lacking. Therefore, this study investigates students' readiness level and preparedness for the 4IR. The findings of this study will benefit the HEIs policymakers, administration, faculties, departments, industries and society at large since they will be informed of the student's readiness and preparedness toward industry 4.0.

Design/methodology/approach

The authors adopted the measures from the same context as previous studies in this study. The questionnaire was divided into three sections; the first part described the purpose and introduction of the search with the surety to keep the data confidential. The second part consisted of demographical information like gender, education. The last parts consisted of four subsections, question items in these parts are based on the related previous study. Characteristics consisted of 14 items, knowledge consisted of 18 items related to 4IR technologies, Organizational Dimension comprised of four items related to academic programs, curriculum and training. Preparedness contained two items. The participants have rated all the items in 5-Likert scale.

Findings

Results from structural equation modeling showed that students' characteristics, knowledge of 4IR technologies and organizational dimensions significantly impact their preparedness for the 4IR. The study also found that organizational dimensions have the highest impact on students' preparedness. Furthermore, the organizational dimension significantly influences students' knowledge of 4IR technology. Moreover, students' characteristics related to 4IR are significantly affected by their knowledge of 4IR technology and organizational dimension. The findings suggest that HEIs are responsible for increasing the adoption of 4IR, and therefore organizational dimensions such as the academic programs, training, technological infrastructure and others are all critical for preparing students for a better future and should be given a priority.

Research limitations/implications

This study has used academic programs and training to measure the organizational dimension. However, other important factors should be considered, such as technological infrastructure and leadership and governance of HEIs. Second, the current research depends on quantitative data, so future research should implement a mixed methodology (questionnaires, depth interviews, document analysis and focus group) to understand the factors affecting students' readiness for 4IR clearly. Finally, although the 4IR has numerous benefits, it also has challenges in its implementation, so future studies should focus on challenges encountered by different stakeholders in implementing 4IR-related technologies.

Practical implications

The curriculum must include mandatory courses related to IT infrastructure design, user experience programming, electronic measurement and control principles, and programming for data science. HEIs should also foster interdisciplinary knowledge by integrating IT, Engineering, Business and Sciences. Furthermore, the HEIs should develop their infrastructure to have smart campuses, labs, classrooms and libraries to make HEIs a space where knowledge can be generated and innovative solutions can be proposed. This entails HEIs offering necessary hardware, software and technical support because if the HEIs improve their technological resources, students will be capable of using 4IR-related technologies effectively.

Originality/value

The advancement of technology has resulted in the emergence of the Fourth Industrial Revolution (4IR), such as artificial intelligence, blockchain, robotics, cloud computing, data science, virtual reality and 3D printing. It is essential to investigate students' readiness for 4IR. However, there is no study as per researchers' knowledge talked about students readiness in HEIs in the Arab world. This study could be a basis for more research on students' perception of the 4IR covering students from various backgrounds and levels.

Details

Journal of Applied Research in Higher Education, vol. 16 no. 1
Type: Research Article
ISSN: 2050-7003

Keywords

Content available
Book part
Publication date: 25 October 2023

Sumesh Singh Dadwal

As the size of the population is growing and the capacity of the planet Earth is limited, human beings are searching for sustainable and technology-enabled solutions to support…

Abstract

As the size of the population is growing and the capacity of the planet Earth is limited, human beings are searching for sustainable and technology-enabled solutions to support society, ecology and economy. One of the solutions has been developing smart sustainable cities. Smart sustainable cities are cities as systems, where their infrastructure, different subsystems and different functional domains are virtually connected to the information and communication technologies (ICT) and internet via sensors and devices and the Internet of Things (IoT), to collect and process real-time Big Data and make efficient, effective and sustainable solutions for a democratic and liveable city for its various stakeholders. This chapter explores the concepts and practices of sustainable smart cities across the globe and explores the use of technologies such as IoT, Blockchain technology and Cloud computing, etc. their challenges and then presents a view on business models for sustainable smart cities.

Article
Publication date: 6 March 2024

Xiaohui Li, Dongfang Fan, Yi Deng, Yu Lei and Owen Omalley

This study aims to offer a comprehensive exploration of the potential and challenges associated with sensor fusion-based virtual reality (VR) applications in the context of…

Abstract

Purpose

This study aims to offer a comprehensive exploration of the potential and challenges associated with sensor fusion-based virtual reality (VR) applications in the context of enhanced physical training. The main objective is to identify key advancements in sensor fusion technology, evaluate its application in VR systems and understand its impact on physical training.

Design/methodology/approach

The research initiates by providing context to the physical training environment in today’s technology-driven world, followed by an in-depth overview of VR. This overview includes a concise discussion on the advancements in sensor fusion technology and its application in VR systems for physical training. A systematic review of literature then follows, examining VR’s application in various facets of physical training: from exercise, skill development and technique enhancement to injury prevention, rehabilitation and psychological preparation.

Findings

Sensor fusion-based VR presents tangible advantages in the sphere of physical training, offering immersive experiences that could redefine traditional training methodologies. While the advantages are evident in domains such as exercise optimization, skill acquisition and mental preparation, challenges persist. The current research suggests there is a need for further studies to address these limitations to fully harness VR’s potential in physical training.

Originality/value

The integration of sensor fusion technology with VR in the domain of physical training remains a rapidly evolving field. Highlighting the advancements and challenges, this review makes a significant contribution by addressing gaps in knowledge and offering directions for future research.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 8 June 2022

Larissa Statsenko, Aparna Samaraweera, Javad Bakhshi and Nicholas Chileshe

Based on the systematic literature review, this paper aims to propose a framework of Construction 4.0 (C4.0) scenarios, identifying Industry 4.0 (I4.0) enabling technologies and…

1779

Abstract

Purpose

Based on the systematic literature review, this paper aims to propose a framework of Construction 4.0 (C4.0) scenarios, identifying Industry 4.0 (I4.0) enabling technologies and their applications in the construction industry. The paper reviews C4.0 trends and potential areas for development.

Design/methodology/approach

In this research, a systematic literature review (SLR) methodology has been applied, including bibliographic coupling analysis (BCA), co-citation network analysis of keywords, the content analysis with the visualisation of similarities (VOSviewer) software and aggregative thematic analysis (ATA). In total, 170 articles from the top 22 top construction journals in the Scopus database between 2013 and 2021 were analysed.

Findings

Six C4.0 scenarios of applications were identified. Out of nine I4.0 technology domains, Industrial Internet of Things (IIoT), Cloud Computing, Big Data and Analytics had the most references in C4.0 research, while applications of augmented/virtual reality, vertical and horizontal integration and autonomous robotics yet provide ample avenues for the future applied research. The C4.0 application scenarios include efficient energy usage, prefabricated construction, sustainability, safety and environmental management, indoor occupant comfort and efficient asset utilisation.

Originality/value

This research contributes to the body of knowledge by offering a framework of C4.0 scenarios revealing the status quo of research published in the top construction journals into I4.0 technology applications in the sector. The framework evaluates current C4.0 research trends and gaps in relation to nine I4.0 technology domains as compared with more advanced industry sectors and informs academic community, practitioners and strategic policymakers with interest in C4.0 trends.

Details

Construction Innovation , vol. 23 no. 5
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 12 January 2024

Ali Rashidi, George Lukic Woon, Miyami Dasandara, Mohsen Bazghaleh and Pooria Pasbakhsh

The construction industry remains one of the most hazardous industries worldwide, with a higher number of fatalities and injuries each year. The safety and well-being of workers…

Abstract

Purpose

The construction industry remains one of the most hazardous industries worldwide, with a higher number of fatalities and injuries each year. The safety and well-being of workers at a job site are paramount as they face both immediate and long-term risks such as falls and musculoskeletal disorders. To mitigate these dangers, sensor-based technologies have emerged as a crucial tool to promote the safety and well-being of workers on site. The implementation of real-time sensor data-driven monitoring tools can greatly benefit the construction industry by enabling the early identification and prevention of potential construction accidents. This study aims to explore the innovative method of prototype development regarding a safety monitoring system in the form of smart personal protective equipment (PPE) by taking advantage of the recent advances in wearable technology and cloud computing.

Design/methodology/approach

The proposed smart construction safety system has been meticulously crafted to seamlessly integrate with conventional safety gear, such as gloves and vests, to continuously monitor construction sites for potential hazards. This state-of-the-art system is primarily geared towards mitigating musculoskeletal disorders and preventing workers from inadvertently entering high-risk zones where falls or exposure to extreme temperatures could occur. The wearables were introduced through the proposed system in a non-intrusive manner where the safety vest and gloves were chosen as the base for the PPE as almost every construction worker would be required to wear them on site. Sensors were integrated into the PPE, and a smartphone application which is called SOTER was developed to view and interact with collected data. This study discusses the method and process of smart PPE system design and development process in software and hardware aspects.

Findings

This research study posits a smart system for PPE that utilises real-time sensor data collection to improve worksite safety and promote worker well-being. The study outlines the development process of a prototype that records crucial real-time data such as worker location, altitude, temperature and hand pressure while handling various construction objects. The collected data are automatically uploaded to a cloud service, allowing supervisors to monitor it through a user-friendly smartphone application. The worker tracking ability with the smart PPE can help to alleviate the identified issues by functioning as an active warning system to the construction safety management team. It is steadily evident that the proposed smart PPE system can be utilised by the respective industry practitioners to ensure the workers' safety and well-being at construction sites through monitoring of the workers with real-time sensor data.

Originality/value

The proposed smart PPE system assists in reducing the safety risks posed by hazardous environments as well as preventing a certain degree of musculoskeletal problems for workers. Ultimately, the current study unveils that the construction industry can utilise cloud computing services in conjunction with smart PPE to take advantage of the recent advances in novel technological avenues and bring construction safety management to a new level. The study significantly contributes to the prevailing knowledge of construction safety management in terms of applying sensor-based technologies in upskilling construction workers' safety in terms of real-time safety monitoring and safety knowledge sharing.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 14 April 2023

Obinna Chimezie Madubuike, Chinemelu J. Anumba and Evangelia Agapaki

This paper aims to focus on identifying key health-care issues amenable to digital twin (DT) approach. It starts with a description of the concept and enabling technologies of a…

Abstract

Purpose

This paper aims to focus on identifying key health-care issues amenable to digital twin (DT) approach. It starts with a description of the concept and enabling technologies of a DT and then discusses potential applications of DT solutions in healthcare facilities management (FM) using four different scenarios. The scenario planning focused on monitoring and controlling the heating, ventilation, and air-conditioning system in real-time; monitoring indoor air quality (IAQ) to monitor the performance of medical equipment; monitoring and tracking pulsed light for SARS-Cov-2; and monitoring the performance of medical equipment affected by radio frequency interference (RFI).

Design/methodology/approach

The importance of a healthcare facility, its systems and equipment necessitates an effective FM practice. However, the FM practices adopted have several areas for improvement, including the lack of effective real-time updates on performance status, asset tracking, bi-directional coordination of changes in the physical facilities and the computational resources that support and monitor them. Consequently, there is a need for more intelligent and holistic FM systems. We propose a DT which possesses the key features, such as real-time updates and bi-directional coordination, which can address the shortcomings in healthcare FM. DT represents a virtual model of a physical component and replicates the physical data and behavior in all instances. The replication is attained using sensors to obtain data from the physical component and replicating the physical component's behavior through data analysis and simulation. This paper focused on identifying key healthcare issues amenable to DT approach. It starts with a description of the concept and enabling technologies of a DT and then discusses potential applications of DT solutions in healthcare FM using four different scenarios.

Findings

The scenarios were validated by industry experts and concluded that the scenarios offer significant potential benefits for the deployment of DT in healthcare FM such as monitoring facilities’ performance in real-time and improving visualization by integrating the 3D model.

Research limitations/implications

In addition to inadequate literature addressing healthcare FM, the study was also limited to one of the healthcare facilities of a large public university, and the scope of the study was limited to IAQ including pressure, relative humidity, carbon dioxide and temperature. Additionally, the study showed the potential benefits of DT application in healthcare FM using various scenarios that DT experts validated.

Practical implications

The study shows the practical implication using the various validated scenarios and identified enabling technologies. The combination and implementation of those mentioned above would create a system that can effectively help manage facilities and improve facilities' performances.

Social implications

The only identifiable social solution is that the proposed system in this study can manually be overridden to prevent absolute autonomous control of the smart system in cases when needed.

Originality/value

To the best of the authors’ knowledge, this is the only study that has addressed healthcare FM using the DT approach. This research is an excerpt from an ongoing dissertation.

Details

Journal of Facilities Management , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1472-5967

Keywords

Article
Publication date: 1 March 2022

Evandro Eduardo Broday and Manuel Carlos Gameiro da Silva

The changes brought by Industry 4.0 go beyond transformations in the industrial environment. The increasingly frequent digitization and robotization of activities is not only…

Abstract

Purpose

The changes brought by Industry 4.0 go beyond transformations in the industrial environment. The increasingly frequent digitization and robotization of activities is not only restricted to the industrial environment, but also to people's daily routine. People spend a large part of their time inside buildings, and maintaining adequate Indoor Environmental Quality (IEQ) is an essential factor for a healthy and productive environment. In this sense, the purpose of this study is to verify how the Internet of Things (IoT) is being used to improve the indoor environment, through sensors that instantly measure the conditions of the environment.

Design/methodology/approach

The aim of this paper is to verify, through a literature review, how IoT is being used for building control (for energy saving purposes) and to monitor IEQ conditions inside buildings, in order to provide a better environment for occupants, in terms of health and comfort. By combining keywords in databases, PRISMA method was used to select the articles for analysis, and 91 articles were analyzed.

Findings

The main findings in this research are: (1) the main purpose for applying IoT inside buildings is to reduce energy consumption; (2) there is an interest in developing low-cost sensoring devices with a learning approach; (3) Machine Learning methods are mainly used for energy saving purposes and to learn about occupants' behavior inside buildings, focusing on thermal comfort; (4) sensors in the IoT era are a requirement to help improve people's comfort and well-being.

Originality/value

Studies directly correlating IoT and IEQ are limited. This paper emphasises the link between them, through the presentation of recent methods to control the built environment.

Details

Smart and Sustainable Built Environment, vol. 12 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 2 May 2023

Xianghong Fan, Tao Chen and Yuting He

This paper aims to study the influence of different reinforcement methods on crack monitoring characteristics of eddy current array sensors, and the sensors with two different…

Abstract

Purpose

This paper aims to study the influence of different reinforcement methods on crack monitoring characteristics of eddy current array sensors, and the sensors with two different reinforcement methods, SUS304 reinforcement and permalloy reinforcement, are proposed.

Design/methodology/approach

First, the finite element model of the sensor is established to analyze the influence of the reinforcement plate’s electromagnetic parameters on the crack identification sensitivity. Then, the crack monitoring accuracy test of sensors with two reinforcement methods is carried out. Finally, the fatigue crack monitoring experiments with bolt tightening torques of 45 and 63 N · m are carried out, respectively.

Findings

In this study, it is found that the crack identification sensitivity of the sensor can be improved by increasing the relative permeability of the reinforcement plate. The crack monitoring accuracy of the sensors with two different reinforcement methods is about 1 mm. And the crack identification sensitivity of the sensor reinforced by permalloy reinforcement plate is significantly higher than that of the sensor reinforced by SUS304 reinforcement plate.

Originality/value

The sensor reinforced by reinforcement plate can work normally under the squeezing action of the bolt, and the crack monitoring sensitivity of the sensor can be significantly improved by using the reinforcement plate with high relative permeability.

Article
Publication date: 30 March 2023

Rafael Diaz and Ali Ardalan

Motivated by recent research indicating that the operational performance of an enterprise can be enhanced by building a supporting data-driven environment in which to operate…

Abstract

Purpose

Motivated by recent research indicating that the operational performance of an enterprise can be enhanced by building a supporting data-driven environment in which to operate, this paper presents a simulation framework that enables an examination of the effects of applying smart manufacturing principles to conventional production systems, intending to transition to digital platforms.

Design/methodology/approach

To investigate the extent to which conventional production systems can be transformed into novel data-driven environments, the well-known constant work-in-process (CONWIP) production systems and considered production sequencing assignments in flowshops were studied. As a result, a novel data-driven priority heuristic, Net-CONWIP was designed and studied, based on the ability to collect real-time information about customer demand and work-in-process inventory, which was applied as part of a distributed and decentralised production sequencing analysis. Application of heuristics like the Net-CONWIP is only possible through the ability to collect and use real-time data offered by a data-driven system. A four-stage application framework to assist practitioners in applying the proposed model was created.

Findings

To assess the robustness of the Net-CONWIP heuristic under the simultaneous effects of different levels of demand, its different levels of variability and the presence of bottlenecks, the performance of Net-CONWIP with conventional CONWIP systems that use first come, first served priority rule was compared. The results show that the Net-CONWIP priority rule significantly reduced customer wait time in all cases relative to FCFS.

Originality/value

Previous research suggests there is considerable value in creating data-driven environments. This study provides a simulation framework that guides the construction of a digital transformation environment. The suggested framework facilitates the inclusion and analysis of relevant smart manufacturing principles in production systems and enables the design and testing of new heuristics that employ real-time data to improve operational performance. An approach that can guide the structuring of data-driven environments in production systems is currently lacking. This paper bridges this gap by proposing a framework to facilitate the design of digital transformation activities, explore their impact on production systems and improve their operational performance.

Details

Industrial Management & Data Systems, vol. 123 no. 5
Type: Research Article
ISSN: 0263-5577

Keywords

1 – 10 of 681