Search results

1 – 10 of 38
Article
Publication date: 17 April 2024

Rafiu King Raji, Jian Lin Han, Zixing Li and Lihua Gong

At the moment, in terms of both research and commercial products, smart shoe technology and applications seem not to attract the same magnitude of attention compared to smart…

Abstract

Purpose

At the moment, in terms of both research and commercial products, smart shoe technology and applications seem not to attract the same magnitude of attention compared to smart garments and other smart wearables such as wrist watches and wrist bands. The purpose of this study is to fill this knowledge gap by discussing issues regarding smart shoe sensing technologies, smart shoe sensor placements, factors that affect sensor placements and finally the areas of smart shoe applications.

Design/methodology/approach

Through a review of relevant literature, this study first and foremost attempts to explain what constitutes a smart shoe and subsequently discusses the current trends in smart shoe applications. Discussed in this study are relevant sensing technologies, sensor placement and areas of smart shoe applications.

Findings

This study outlined 13 important areas of smart shoe applications. It also uncovered that majority of smart shoe functionality are physical activity tracking, health rehabilitation and ambulation assistance for the blind. Also highlighted in this review are some of the bottlenecks of smart shoe development.

Originality/value

To the best of the authors’ knowledge, this is the first comprehensive review paper focused on smart shoe applications, and therefore serves as an apt reference for researchers within the field of smart footwear.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 4 December 2023

Feifei Zhong, Guoping Liu, Zhenyu Lu, Lingyan Hu, Yangyang Han, Yusong Xiao and Xinrui Zhang

Robotic arms’ interactions with the external environment are growing more intricate, demanding higher control precision. This study aims to enhance control precision by…

Abstract

Purpose

Robotic arms’ interactions with the external environment are growing more intricate, demanding higher control precision. This study aims to enhance control precision by establishing a dynamic model through the identification of the dynamic parameters of a self-designed robotic arm.

Design/methodology/approach

This study proposes an improved particle swarm optimization (IPSO) method for parameter identification, which comprehensively improves particle initialization diversity, dynamic adjustment of inertia weight, dynamic adjustment of local and global learning factors and global search capabilities. To reduce the number of particles and improve identification accuracy, a step-by-step dynamic parameter identification method was also proposed. Simultaneously, to fully unleash the dynamic characteristics of a robotic arm, and satisfy boundary conditions, a combination of high-order differentiable natural exponential functions and traditional Fourier series is used to develop an excitation trajectory. Finally, an arbitrary verification trajectory was planned using the IPSO to verify the accuracy of the dynamical parameter identification.

Findings

Experiments conducted on a self-designed robotic arm validate the proposed parameter identification method. By comparing it with IPSO1, IPSO2, IPSOd and least-square algorithms using the criteria of torque error and root mean square for each joint, the superiority of the IPSO algorithm in parameter identification becomes evident. In this case, the dynamic parameter results of each link are significantly improved.

Originality/value

A new parameter identification model was proposed and validated. Based on the experimental results, the stability of the identification results was improved, providing more accurate parameter identification for further applications.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 26 March 2024

Sajad Pirsa and Fahime Purghorbani

In this study, an attempt has been made to collect the research that has been done on the construction and design of the H2O2 sensor. So far, many efforts have been made to…

Abstract

Purpose

In this study, an attempt has been made to collect the research that has been done on the construction and design of the H2O2 sensor. So far, many efforts have been made to quickly and sensitively determine H2O2 concentration based on different analytical principles. In this study, the importance of H2O2, its applications in various industries, especially the food industry, and the importance of measuring it with different techniques, especially portable sensors and on-site analysis, have been investigated and studied.

Design/methodology/approach

Hydrogen peroxide (H2O2) is a very simple molecule in nature, but due to its strong oxidizing and reducing properties, it has been widely used in the pharmaceutical, medical, environmental, mining, textile, paper, food production and chemical industries. Sensitive, rapid and continuous detection of H2O2 is of great importance in many systems for product quality control, health care, medical diagnostics, food safety and environmental protection.

Findings

Various methods have been developed and applied for the analysis of H2O2, such as fluorescence, colorimetry and electrochemistry, among them, the electrochemical technique due to its advantages in simple instrumentation, easy miniaturization, sensitivity and selectivity.

Originality/value

Monitoring the H2O2 concentration level is of practical importance for academic and industrial purposes. Edible oils are prone to oxidation during processing and storage, which may adversely affect oil quality and human health. Determination of peroxide value (PV) of edible oils is essential because PV is one of the most common quality parameters for monitoring lipid oxidation and oil quality control. The development of cheap, simple, fast, sensitive and selective H2O2 sensors is essential.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 29 November 2023

Rupinder Singh, Gurwinder Singh and Arun Anand

The purpose of this paper is to design and manufacture an intelligent 3D printed sensor to monitor the re-occurrence of diaphragmatic hernia (DH; after surgery) in bovines as an…

Abstract

Purpose

The purpose of this paper is to design and manufacture an intelligent 3D printed sensor to monitor the re-occurrence of diaphragmatic hernia (DH; after surgery) in bovines as an Internet of Things (IOT)-based solution.

Design/methodology/approach

The approach used in this study is based on a bibliographic analysis for the re-occurrence of DH in the bovine after surgery. Using SolidWorks and ANSYS, the computer-aided design model of the implant was 3D printed based on literature and discussions on surgical techniques with a veterinarian. To ensure the error-proof design, load test and strain–stress rate analyses with boundary distortion have been carried out for the implant sub-assembly.

Findings

An innovative IOT-based additive manufacturing solution has been presented for the construction of a mesh-type sensor (for the health monitoring of bovine after surgery).

Originality/value

An innovative mesh-type sensor has been fabricated by integration of metal and polymer 3D printing (comprising 17–4 precipitate hardened stainless steel and polyvinylidene fluoride-hydroxyapatite-chitosan) without sacrificing strength and specific absorption ratio value.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 29 March 2024

Ahmet Tarık Usta and Mehmet Şahin Gök

The world is increasingly threatened by climate change. As the dimensions of this danger grow, it becomes essential to develop the most effective policies to mitigate its impacts…

Abstract

Purpose

The world is increasingly threatened by climate change. As the dimensions of this danger grow, it becomes essential to develop the most effective policies to mitigate its impacts and adapt to these new conditions. Technology is one of the most crucial components of this process, and this study focuses on examining climate change adaptation technologies. The aim of the study is to investigate the entire spectrum of technology actors and to concentrate on the technology citation network established from the past to the present, aiming to identify the core actors within this structure and provide a more comprehensive outlook.

Design/methodology/approach

The study explores patent citation relationships using social network analysis. It utilizes patent data published between 2000 and 2023 and registered by the US Patent and Trademark Office.

Findings

Study findings reveal that technologies related to greenhouse technologies in agriculture, technologies for combatting vector-borne diseases in the health sector, rainwater harvesting technologies for water management, and urban green infrastructure technologies for infrastructure systems emerge as the most suitable technologies for adaptation. For instance, greenhouse technologies hold significant potential for sustainable agricultural production and coping with the adverse effects of climate change. Additionally, ICTs establish intensive connections with nearly all other technologies, thus supporting our efforts in climate change adaptation. These technologies facilitate data collection, analysis, and management, contributing to a better understanding of the impacts of climate change.

Originality/value

Existing patent analysis methods often fall short in detailing the unique contributions of each technology within a technological network. This study addresses this deficiency by comprehensively examining and evaluating each technology within the network, thereby enabling us to better understand how these technologies interact with each other and contribute to the overall technological landscape.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 23 January 2024

Wang Zhang, Lizhe Fan, Yanbin Guo, Weihua Liu and Chao Ding

The purpose of this study is to establish a method for accurately extracting torch and seam features. This will improve the quality of narrow gap welding. An adaptive deflection…

Abstract

Purpose

The purpose of this study is to establish a method for accurately extracting torch and seam features. This will improve the quality of narrow gap welding. An adaptive deflection correction system based on passive light vision sensors was designed using the Halcon software from MVtec Germany as a platform.

Design/methodology/approach

This paper proposes an adaptive correction system for welding guns and seams divided into image calibration and feature extraction. In the image calibration method, the field of view distortion because of the position of the camera is resolved using image calibration techniques. In the feature extraction method, clear features of the weld gun and weld seam are accurately extracted after processing using algorithms such as impact filtering, subpixel (XLD), Gaussian Laplacian and sense region for the weld gun and weld seam. The gun and weld seam centers are accurately fitted using least squares. After calculating the deviation values, the error values are monitored, and error correction is achieved by programmable logic controller (PLC) control. Finally, experimental verification and analysis of the tracking errors are carried out.

Findings

The results show that the system achieves great results in dealing with camera aberrations. Weld gun features can be effectively and accurately identified. The difference between a scratch and a weld is effectively distinguished. The system accurately detects the center features of the torch and weld and controls the correction error to within 0.3mm.

Originality/value

An adaptive correction system based on a passive light vision sensor is designed which corrects the field-of-view distortion caused by the camera’s position deviation. Differences in features between scratches and welds are distinguished, and image features are effectively extracted. The final system weld error is controlled to 0.3 mm.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 15 April 2024

Majid Monajjemi and Fatemeh Mollaamin

Recently, powerful instruments for biomedical engineering research studies, including disease modeling, drug designing and nano-drug delivering, have been extremely investigated…

Abstract

Purpose

Recently, powerful instruments for biomedical engineering research studies, including disease modeling, drug designing and nano-drug delivering, have been extremely investigated by researchers. Particularly, investigation in various microfluidics techniques and novel biomedical approaches for microfluidic-based substrate have progressed in recent years, and therefore, various cell culture platforms have been manufactured for these types of approaches. These microinstruments, known as tissue chip platforms, mimic in vivo living tissue and exhibit more physiologically similar vitro models of human tissues. Using lab-on-a-chip technologies in vitro cell culturing quickly caused in optimized systems of tissues compared to static culture. These chipsets prepare cell culture media to mimic physiological reactions and behaviors.

Design/methodology/approach

The authors used the application of lab chip instruments as a versatile tool for point of health-care (PHC) applications, and the authors applied a current progress in various platforms toward biochip DNA sensors as an alternative to the general bio electrochemical sensors. Basically, optical sensing is related to the intercalation between glass surfaces containing biomolecules with fluorescence and, subsequently, its reflected light that arises from the characteristics of the chemical agents. Recently, various techniques using optical fiber have progressed significantly, and researchers apply highlighted remarks and future perspectives of these kinds of platforms for PHC applications.

Findings

The authors assembled several microfluidic chips through cell culture and immune-fluorescent, as well as using microscopy measurement and image analysis for RNA sequencing. By this work, several chip assemblies were fabricated, and the application of the fluidic routing mechanism enables us to provide chip-to-chip communication with a variety of tissue-on-a-chip. By lab-on-a-chip techniques, the authors exhibited that coating the cell membrane via poly-dopamine and collagen was the best cell membrane coating due to the monolayer growth and differentiation of the cell types during the differentiation period. The authors found the artificial membrane, through coating with Collagen-A, has improved the growth of mouse podocytes cells-5 compared with the fibronectin-coated membrane.

Originality/value

The authors could distinguish the differences across the patient cohort when they used a collagen-coated microfluidic chip. For instance, von Willebrand factor, a blood glycoprotein that promotes hemostasis, can be identified and measured through these type-coated microfluidic chips.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 13 February 2024

Federico Lanzalonga, Roberto Marseglia, Alberto Irace and Paolo Pietro Biancone

Our study examines how artificial intelligence (AI) can enhance decision-making processes to promote circular economy practices within the utility sector.

Abstract

Purpose

Our study examines how artificial intelligence (AI) can enhance decision-making processes to promote circular economy practices within the utility sector.

Design/methodology/approach

A unique case study of Alia Servizi Ambientali Spa, an Italian multi-utility company using AI for waste management, is analyzed using the Gioia method and semi-structured interviews.

Findings

Our study discovers the proactive role of the user in waste management processes, the importance of economic incentives to increase the usefulness of the technology and the role of AI in waste management transformation processes (e.g. glass waste).

Originality/value

The present study enhances the circular economy model (transformation, distribution and recovery), uncovering AI’s role in waste management. Finally, we inspire managers with algorithms used for data-driven decisions.

Details

Management Decision, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0025-1747

Keywords

Article
Publication date: 9 April 2024

Yong Qi, Qian Chen, Mengyuan Yang and Yilei Sun

Existing studies have paid less attention to the impact of knowledge accumulation on digital transformation and its boundary conditions. Hence, this study aims to investigate the…

Abstract

Purpose

Existing studies have paid less attention to the impact of knowledge accumulation on digital transformation and its boundary conditions. Hence, this study aims to investigate the effects of ambidextrous knowledge accumulation on manufacturing digital transformation under the moderation of dynamic capability.

Design/methodology/approach

This study divides knowledge accumulation into exploratory and exploitative knowledge accumulation and divides dynamic capability into alliance management capability and new product development capability. To clarify the relationship among ambidextrous knowledge accumulation, dynamic capability and manufacturing digital transformation, the authors collect data from 421 Chinese listed manufacturing enterprises from 2016 to 2020 and perform analysis by multiple hierarchical regression method, heterogeneity test and robustness analysis.

Findings

The empirical results show that both exploratory and exploitative knowledge accumulation can significantly promote manufacturing digital transformation. Keeping ambidextrous knowledge accumulation in parallel is more conducive than keeping single-dimensional knowledge accumulation. Besides, dynamic capability positively moderates the relationship between ambidextrous knowledge accumulation and manufacturing digital transformation. Moreover, the heterogeneity test shows that the impact of ambidextrous knowledge accumulation and dynamic capabilities on manufacturing digital transformation varies widely across different industry segments or different regions.

Originality/value

First, this paper shifts attention to the role of ambidextrous knowledge accumulation in manufacturing digital transformation and expands the connotation and extension of knowledge accumulation. Second, this study reveals that dynamic capability is a vital driver of digital transformation, which corroborates the previous findings of dynamic capability as an important driver and contributes to enriching the knowledge management literature. Third, this paper provides a comprehensive micro measurement of ambidextrous knowledge accumulation and digital transformation based on the development characteristics of the digital economy era, which provides a theoretical basis for subsequent research.

Details

Journal of Knowledge Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1367-3270

Keywords

Article
Publication date: 13 April 2023

Sadia Samar Ali, Shahbaz Khan, Nosheen Fatma, Cenap Ozel and Aftab Hussain

Organisations and industries are often looking for technologies that can accomplish multiple tasks, providing economic benefits and an edge over their competitors. In this…

Abstract

Purpose

Organisations and industries are often looking for technologies that can accomplish multiple tasks, providing economic benefits and an edge over their competitors. In this context, drones have the potential to change many industries by making operations more efficient, safer and more economic. Therefore, this study investigates the use of drones as the next step in smart/digital warehouse management to determine their socio-economic benefits.

Design/methodology/approach

The study identifies various enablers impacting drone applications to improve inventory management, intra-logistics, inspections and surveillance in smart warehouses through a literature review, a test of concordance and the fuzzy Delphi method. Further, the graph theory matrix approach (GTMA) method was applied to ranking the enablers of drone application in smart/digital warehouses. In the subsequent phase, researchers investigated the relation between the drone application's performance and the enablers of drone adoption using logistic regression analysis under the TOE framework.

Findings

This study identifies inventory man agement, intra-logistics, inspections and surveillance are three major applications of drones in the smart warehousing. Further, nine enablers are identified for the adoption of drone in warehouse management. The findings suggest that operational effectiveness, compatibility of drone integration and quality/value offered are the most impactful enablers of drone adoption in warehouses. The logistic regression findings are useful for warehouse managers who are planning to adopt drones in a warehouse for efficient operations.

Research limitations/implications

This study identifies the enablers of drone adoption in the smart and digital warehouse through the literature review and fuzzy Delphi. Therefore, some enablers may be overlooked during the identification process. In addition to this, the analysis is based on the opinion of the expert which might be influenced by their field of expertise.

Practical implications

By considering technology-organisation-environment (TOE) framework warehousing companies identify the opportunities and challenges associated with using drones in a smart warehouse and develop strategies to integrate drones into their operations effectively.

Originality/value

This study proposes a TOE-based framework for the adoption of drones in warehouse management to improve the three prominent warehouse functions inventory management, intra-logistics, inspections and surveillance using the mixed-method.

Details

Benchmarking: An International Journal, vol. 31 no. 3
Type: Research Article
ISSN: 1463-5771

Keywords

1 – 10 of 38