Search results

21 – 30 of over 13000
Article
Publication date: 29 October 2019

Ravinder Singh and Kuldeep Singh Nagla

The purpose of this research is to provide the necessarily and resourceful information regarding range sensors to select the best fit sensor for robust autonomous navigation…

Abstract

Purpose

The purpose of this research is to provide the necessarily and resourceful information regarding range sensors to select the best fit sensor for robust autonomous navigation. Autonomous navigation is an emerging segment in the field of mobile robot in which the mobile robot navigates in the environment with high level of autonomy by lacking human interactions. Sensor-based perception is a prevailing aspect in the autonomous navigation of mobile robot along with localization and path planning. Various range sensors are used to get the efficient perception of the environment, but selecting the best-fit sensor to solve the navigation problem is still a vital assignment.

Design/methodology/approach

Autonomous navigation relies on the sensory information of various sensors, and each sensor relies on various operational parameters/characteristic for the reliable functioning. A simple strategy shown in this proposed study to select the best-fit sensor based on various parameters such as environment, 2 D/3D navigation, accuracy, speed, environmental conditions, etc. for the reliable autonomous navigation of a mobile robot.

Findings

This paper provides a comparative analysis for the diverse range sensors used in mobile robotics with respect to various aspects such as accuracy, computational load, 2D/3D navigation, environmental conditions, etc. to opt the best-fit sensors for achieving robust navigation of autonomous mobile robot.

Originality/value

This paper provides a straightforward platform for the researchers to select the best range sensor for the diverse robotics application.

Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 22 March 2023

Qi Jiang, Jihua Li and Danish Masood

With the increasing development of the surgical robots, the opto-mechatronic technologies are more potential in the robotics system optimization. The optic signal plays an…

Abstract

Purpose

With the increasing development of the surgical robots, the opto-mechatronic technologies are more potential in the robotics system optimization. The optic signal plays an important role in opto-mechatronic systems. This paper aims to present a review of the research status on fiber-optic-based force and shape sensors in surgical robots.

Design/methodology/approach

Advances of fiber-optic-based force and shape sensing techniques in the past 20 years are investigated and summarized according to different surgical requirement and technical characteristics. The research status analysis and development prospects are discussed.

Findings

Compared with traditional electrical signal conduction, the phototransduction provides higher speed transmission, lower signal loss and the immunity to electromagnetic interference in robot perception. Most importantly, more and more advanced optic-based sensing technologies are applied to medical robots in the past two decades because the prominence is magnetic resonance imaging compatibility. For medical robots especially, fiber-optic sensing technologies can improve working security, manipulating accuracy and provide force and shape feedback to surgeon.

Originality/value

This is a new perspective. This paper mainly researches the application of optical fiber sensor according to different surgeries which is beneficial to learn the great potential of optical fiber sensor in surgical robots. By enumerating the research progress of medical robots in optimization design, multimode sensing and advanced materials, the development tendency of fiber-optic-based force and shape sensing technologies in surgical robots is prospected.

Details

Sensor Review, vol. 43 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 January 1989

Peter McGeehin

Optical sensor companies in the UK are getting together to organise their own research and development.

Abstract

Optical sensor companies in the UK are getting together to organise their own research and development.

Details

Sensor Review, vol. 9 no. 1
Type: Research Article
ISSN: 0260-2288

Article
Publication date: 11 October 2022

Marina Stramarkou, Achilleas Bardakas, Magdalini Krokida and Christos Tsamis

Carbon dioxide (CO2) has attracted special scientific interest over the last years mainly because of its relation to climate change and indoor air quality. Except for this, CO2

267

Abstract

Purpose

Carbon dioxide (CO2) has attracted special scientific interest over the last years mainly because of its relation to climate change and indoor air quality. Except for this, CO2 can be used as an indicator of food freshness, patients’ clinical state and fire detection. Therefore, the accurate monitoring and controlling of CO2 levels are imperative. The development of highly sensitive, selective and reliable sensors that can efficiently distinguish CO2 in various conditions of temperature, humidity and other gases’ interference is the subject of intensive research with chemi-resistive zinc oxide (ZnO)-based sensors holding a privileged position. Several ZnO nanostructures have been used in sensing applications because of their versatile features. However, the deficient selectivity and long-term stability remain major concerns, especially when operating at room temperature. This study aims to encompass an extensive study of CO2 chemi-resistive sensors based on ZnO, introducing the most significant advances of recent years and the best strategies for enhancing ZnO sensing properties.

Design/methodology/approach

An overview of the different ZnO nanostructures used for CO2 sensing and their synthesis methods is presented, focusing on the parameters that highly affect the sensing mechanism and, thus, the performance of CO2 sensors.

Findings

The selectivity and sensitivity of ZnO sensors can be enhanced by adjusting various parameters during their synthesis and by doping or treating ZnO with suitable materials.

Originality/value

This paper summarises the advances in the rapidly evolving field of CO2 sensing by ZnO sensors and provides research directions for optimised sensors in the future.

Details

Sensor Review, vol. 42 no. 6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 16 March 2015

Munezza Ata Khan, Umar Ansari and Murtaza Najabat Ali

Real-time monitoring of wound or injured tissues is critical for speedy recovery, and the onset of a cascade of biochemical reactions provides potential biomarkers that facilitate…

Abstract

Purpose

Real-time monitoring of wound or injured tissues is critical for speedy recovery, and the onset of a cascade of biochemical reactions provides potential biomarkers that facilitate the process of wound monitoring, e.g. pH, temperature, moisture level, bacterial load, cytokines, interleukins, etc. Among all the biomarkers, pH has been known to have a profound impact on the wound healing process, and is used to determine the incidence of bacterial infection of the wound (persistently elevated alkaline pH), proteolytic activity at the site of injury, take rate in skin grafting, wound healing stage and preparation for wound debridement.

Design/methodology/approach

This review highlights the significance of pH in determination of clinical parameters and for selection of an appropriate treatment regime, and it presents an in-depth analysis of the designs and fabrication methods that use integrated pH sensors, which have been reported to date for the real-time monitoring of wound healing.

Findings

For an expedited wound healing process, the significance of pH mandated the need of an integrated sensor system that would facilitate real-time monitoring of healing wounds and obviate the requirement of redressing or complicated testing procedures, which are both labor-intensive and painful for the patient. The review also discussed different types of sensor systems which were developed using hydrogel as a pH-responsive system coupled with voltammetry, potentiometry, impedimetric and flex-circuit inductive transducer systems. All of the mentioned devices have considerable potential for clinical applications, and there is need of in vivo testing to validate their efficiency and sensitivity under practical scenarios.

Originality/value

This manuscript is an original review of literature, and permission has been granted to use the figures from previously published papers.

Details

Sensor Review, vol. 35 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Content available
Article
Publication date: 29 June 2010

Yan Yu

49

Abstract

Details

Sensor Review, vol. 30 no. 3
Type: Research Article
ISSN: 0260-2288

Article
Publication date: 1 June 2000

Gábor Harsányi

Polymeric materials have gained a wide theoretical interest and practical application in sensor technology. They can be used for very different purposes and may offer unique…

6210

Abstract

Polymeric materials have gained a wide theoretical interest and practical application in sensor technology. They can be used for very different purposes and may offer unique possibilities. The paper gives a broad summary about the sensor structures and sensing polymer films used in a wide variety of sensors. Finally, the present status and perspectives as well as the advantages of specific polymer based sensors are summarised.

Details

Sensor Review, vol. 20 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 29 March 2011

Robert Bogue

The paper aims to describe the sensors used for interfacing with consumer electronic devices.

1352

Abstract

Purpose

The paper aims to describe the sensors used for interfacing with consumer electronic devices.

Design/methodology/approach

The paper describes the types of sensors employed in user‐interface devices such as trackballs, mice, touch pads, touch screens and gesture‐based systems. It concludes with a brief consideration of brain‐computer interface technology.

Findings

It is shown that a diverse range of sensors is used to interface with consumer electronics. They are based on optical, electrical, acoustic and solid‐state (MEMS) technologies. In the longer term, many may ultimately be replaced by sensors that interpret thought by detecting brain waves.

Originality/value

The paper provides a timely review of the sensors used to interface with consumer electronics. These constitute a very large and rapidly growing market.

Details

Sensor Review, vol. 31 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 14 March 2018

Alaaldeen Al-Halhouli, Hala Qitouqa, Abdallah Alashqar and Jumana Abu-Khalaf

This review paper aims to introduce the inkjet printing as a tool for fabrication of flexible/wearable sensors. It summarizes inkjet printing techniques including various modes of…

2520

Abstract

Purpose

This review paper aims to introduce the inkjet printing as a tool for fabrication of flexible/wearable sensors. It summarizes inkjet printing techniques including various modes of operation, commonly used substrates and inks, commercially available inkjet printers and variables affecting the printing process. More focus is on the drop-on-demand printing mode, a strongly considered printing technique for patterning conductive lines on flexible and stretchable substrates. As inkjet-printed patterns are influenced by various variables related to its conductivity, resistivity, durability and dimensions of printed patterns, the main printing parameters (e.g. printing multilayers, inks sintering, surface treatment, cartridge specifications and printing process parameters) are reported. The embedded approaches of adding electronic components (e.g. surface-mounted and optoelectronic devices) to the stretchable circuit are also included.

Design/methodology/approach

In this paper, inkjet printing techniques for fabrication of flexible/stretchable circuits will be reviewed. Specifically, the various modes of operation, commonly used substrates and inks and variables affecting the printing process will be presented. Next, examples of inkjet-printed electronic devices will be demonstrated. These devices will be compared to their rigid counterpart in terms of ease of implementation and electrical behavior for wearable sensor applications. Finally, a summary of key findings and future research opportunities will be presented.

Findings

In conclusion, it is evident that the technology of inkjet printing is becoming a competitor to traditional lithography fabrication techniques, as it has the advantage of being low cost and less complex. In particular, this technique has demonstrated great capabilities in the area of flexible/stretchable electronics and sensors. Various inkjet printing methods have been presented with emphasis on their principle of operation and their commercial availability. In addition, the components of a general inkjet printing process have been discussed in details. Several factors affect the resulting printed patterns in terms of conductivity, resistivity, durability and geometry.

Originality/value

The paper focuses on flexible/stretchable optoelectronic devices which could be implemented in stretchable circuits. Furthermore, the importance and challenges related to printing highly conductive and highly stretchable lines, as well as reliable electronic devices, and interfacing them with external circuitry for power transmission, data acquisition and signal conditioning have been highlighted and discussed. Although several fabrication techniques have been recently developed to allow patterning conductive lines on a rubber substrate, the fabrication of fully stretchable wearable sensors remains limited which needs future research in this area for the advancement of wearable sensors.

Details

Sensor Review, vol. 38 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

21 – 30 of over 13000