Search results

1 – 10 of over 11000
Article
Publication date: 15 September 2021

Srinivas Rao Sriram, Saidireddy Parne, Venkata Satya Chidambara Swamy Vaddadi, Damodar Edla, Nagaraju P., Raji Reddy Avala, Vijayakumar Yelsani and Uday Bhasker Sontu

This paper aims to focus on the basic principle of WO3 gas sensors to achieve high gas-sensing performance with good stability and repeatability. Metal oxide-based gas sensors are…

Abstract

Purpose

This paper aims to focus on the basic principle of WO3 gas sensors to achieve high gas-sensing performance with good stability and repeatability. Metal oxide-based gas sensors are widely used for monitoring toxic gas leakages in the environment, industries and households. For better livelihood and a healthy environment, it is extremely helpful to have sensors with higher accuracy and improved sensing features.

Design/methodology/approach

In the present review, the authors focus on recent synthesis methods of WO3-based gas sensors to enhance sensing features towards toxic gases.

Findings

This work has proved that the synthesis method led to provide different morphologies of nanostructured WO3-based material in turn to improve gas sensing performance along with its sensing mechanism.

Originality/value

In this work, the authors reviewed challenges and possibilities associated with the nanostructured WO3-based gas sensors to trace toxic gases such as ammonia, H2S and NO2 for future research.

Details

Sensor Review, vol. 41 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 February 1989

D.J. Mobbs and D. Summerhayes

Sensor Review publishes the results of a major sensor survey.

Abstract

Sensor Review publishes the results of a major sensor survey.

Details

Sensor Review, vol. 9 no. 2
Type: Research Article
ISSN: 0260-2288

Article
Publication date: 14 January 2022

Xiang Li, Keyi Wang, Yan Lin Wang and Kui Cheng Wang

Plantar force is the interface pressure existing between the foot plantar surface and the shoe sole during static or dynamic gait. Plantar force derived from gait and posture…

Abstract

Purpose

Plantar force is the interface pressure existing between the foot plantar surface and the shoe sole during static or dynamic gait. Plantar force derived from gait and posture plays a critical role for rehabilitation, footwear design, clinical diagnostics and sports activities, and so on. This paper aims to review plantar force measurement technologies based on piezoelectric materials, which can make the reader understand preliminary works systematically and provide convenience for researchers to further study.

Design/methodology/approach

The review introduces working principle of piezoelectric sensor, structures and hardware design of plantar force measurement systems based on piezoelectric materials. The structures of sensors in plantar force measurement systems can be divided into four kinds, including monolayered sensor, multilayered sensor, tri-axial sensor and other sensor. The previous studies about plantar force measurement system based on piezoelectric technology are reviewed in detail, and their characteristics and performances are compared.

Findings

A good deal of measurement technologies have been studied by researchers to detect and analyze the plantar force. Among these measurement technologies, taking advantage of easy fabrication and high sensitivity, piezoelectric sensor is an ideal candidate sensing element. However, the number and arrangement of the sensors will influence the characteristics and performances of plantar force measurement systems. Therefore, it is necessary to further study plantar force measurement system for better performances.

Originality/value

So far, many plantar force measurement systems have been proposed, and several reviews already introduced plantar force measurement systems in the aspect of types of pressure sensors, experimental setups for foot pressure measurement analysis and the technologies used in plantar shear stress measurements. However, this paper reviews plantar force measurement systems based on piezoelectric materials. The structures of piezoelectric sensors in the measurement systems are discussed. Hardware design applied to measurement system is summarized. Moreover, the main point of further study is presented in this paper.

Article
Publication date: 26 March 2021

Riyaz Ali Shaik and Elizabeth Rufus

This paper aims to review the shape sensing techniques using large area flexible electronics (LAFE). Shape perception of humanoid robots using tactile data is mainly focused.

Abstract

Purpose

This paper aims to review the shape sensing techniques using large area flexible electronics (LAFE). Shape perception of humanoid robots using tactile data is mainly focused.

Design/methodology/approach

Research papers on different shape sensing methodologies of objects with large area, published in the past 15 years, are reviewed with emphasis on contact-based shape sensors. Fiber optics based shape sensing methodology is discussed for comparison purpose.

Findings

LAFE-based shape sensors of humanoid robots incorporating advanced computational data handling techniques such as neural networks and machine learning (ML) algorithms are observed to give results with best resolution in 3D shape reconstruction.

Research limitations/implications

The literature review is limited to shape sensing application either two- or three-dimensional (3D) LAFE. Optical shape sensing is briefly discussed which is widely used for small area. Optical scanners provide the best 3D shape reconstruction in the noncontact-based shape sensing; here this paper focuses only on contact-based shape sensing.

Practical implications

Contact-based shape sensing using polymer nanocomposites is a very economical solution as compared to optical 3D scanners. Although optical 3D scanners can provide a high resolution and fast scan of the 3D shape of the object, they require line of sight and complex image reconstruction algorithms. Using LAFE larger objects can be scanned with ML and basic electronic circuitory, which reduces the price hugely.

Social implications

LAFE can be used as a wearable sensor to monitor critical biological parameters. They can be used to detect shape of large body parts and aid in designing prosthetic devices. Tactile sensing in humanoid robots is accomplished by electronic skin of the robot which is a prime example of human–machine interface at workplace.

Originality/value

This paper reviews a unique feature of LAFE in shape sensing of large area objects. It provides insights from mechanical, electrical, hardware and software perspective in the sensor design. The most suitable approach for large object shape sensing using LAFE is also suggested.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 28 July 2021

Sudarsana Jena and Ankur Gupta

Considering its vast utility in industries, this paper aims to present a detailed review on fundamentals, classification and progresses in pressure sensors, along with its wide…

Abstract

Purpose

Considering its vast utility in industries, this paper aims to present a detailed review on fundamentals, classification and progresses in pressure sensors, along with its wide area of applications, its design aspects and challenges, to provide state-of-the-art gist to the researchers of the similar domain at one place.

Design/methodology/approach

Swiftly emerging research prospects in the micro-electro-mechanical system (MEMS) enable to build complex and sophisticated micro-structures on a substrate containing moving masses, cantilevers, flexures, levers, linkages, dampers, gears, detectors, actuators and many more on a single chip. One of the MEMS initial products that emerged into the micro-system technology is MEMS pressure sensor. Because of their high performance, low cost and compact in size, these sensors are extensively being adopted in numerous applications, namely, aerospace, automobile and bio-medical domain, etc. These application requirements drive and impose tremendous conditions on sensor design to overcome the tedious design and fabrication procedure before its reality. MEMS-based pressure sensors enable a wide range of pressure measurement as per the application requirements.

Findings

The paper provides a detailed review on fundamentals, classification and progresses in pressure sensors, along with its wide area of applications, its design aspects and challenges, to provide state of the art gist to the researchers of the similar domain at one place.

Originality/value

The present paper discusses the basics of MEMS pressure sensors, their working principles, different design aspects, classification, type of sensing diaphragm used and illustration of various transduction mechanisms. Moreover, this paper presents a comprehensive review on present trend of research on MEMS-based pressure sensors, its applications and the research gap observed till date along with the scope for future work, which has not been discussed in earlier reviews.

Details

Sensor Review, vol. 41 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 14 January 2014

Sari Lakkis, Rafic Younes, Yasser Alayli and Mohamad Sawan

This paper aims to give an overview about the state of the art and novel technologies used in gas sensing. It also discusses the miniaturization potential of some of these…

1601

Abstract

Purpose

This paper aims to give an overview about the state of the art and novel technologies used in gas sensing. It also discusses the miniaturization potential of some of these technologies in a comparative way.

Design/methodology/approach

In this article, the authors state the most of the methods used in gas sensing discuss their advantages and disadvantages and at last the authors discuss the ability of their miniaturization comparing between them in terms of their sensing parameters like sensitivity, selectivity and cost.

Findings

In this article, the authors will try to cover most of the important methods used in gas sensing and their recent developments. The authors will also discuss their miniaturization potential trying to find the best candidate among the different types for the aim of miniaturization.

Originality/value

In this article, the authors will review most of the methods used in gas sensing and discuss their miniaturization potential delimiting the research to a certain type of technology or application.

Details

Sensor Review, vol. 34 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 20 March 2017

Md.Masud Rana, Dauda Sh. Ibrahim, M.R. Mohd Asyraf, S. Jarin and Amanullah Tomal

This review paper aims to focus on recent advances of carbon nanotubes (CNTs) to produce gas sensors. Gas sensors are widely used for monitoring hazardous gas leakages and…

2676

Abstract

Purpose

This review paper aims to focus on recent advances of carbon nanotubes (CNTs) to produce gas sensors. Gas sensors are widely used for monitoring hazardous gas leakages and emissions in the industry, households and other areas. For better safety and a healthy environment, it is highly desirable to have gas sensors with higher accuracy and enhanced sensing features.

Design/methodology/approach

In this review, the authors focus on recent contributions of CNTs to the technology for developing different types of gas sensors. The design, fabrication process and sensing mechanism of each gas sensor are summarized, together with their advantages and disadvantages.

Findings

Nowadays, CNTs are well-known materials which have attracted a significant amount of attention owing to their excellent electrical, electronic and mechanical properties. On exposure to various gases, their properties allow the detection of gases using different methods. Therefore, over recent years, researchers have developed several different types of gas sensors along with other types of sensors for temperature, strain, pressure, etc.

Originality/value

The main purpose of this review is to introduce CNTs as candidates for future research in the field of gas sensing applications and to focus on current technical challenges associated with CNT-based gas sensors.

Details

Sensor Review, vol. 37 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 11 July 2019

Yaser Javed, Mohtashim Mansoor and Irtiza Ali Shah

Pressure, being one of the key variables investigated in scientific and engineering research, requires critical and accurate measurement techniques. With the advancements in…

2189

Abstract

Purpose

Pressure, being one of the key variables investigated in scientific and engineering research, requires critical and accurate measurement techniques. With the advancements in materials and machining technologies, there is a large leap in the measurement techniques including the development of micro electromechanical systems (MEMS) sensors. These sensors are one to two orders smaller in magnitude than traditional sensors and combine electrical and mechanical components that are fabricated using integrated circuit batch-processing technologies. MEMS are finding enormous applications in many industrial fields ranging from medical to automotive, communication to electronics, chemical to aviation and many more with a potential market of billions of dollars. MEMS pressure sensors are now widely used devices owing to their intrinsic properties of small size, light weight, low cost, ease of batch fabrication and integration with an electronic circuit. This paper aims to identify and analyze the common pressure sensing techniques and discuss their uses and advantages. As per our understanding, usage of MEMS pressure sensors in the aerospace industry is quite limited due to cost constraints and indirect measurement approaches owing to the inability to locate sensors in harsh environments. The purpose of this study is to summarize the published literature for application of MEMS pressure sensors in the said field. Five broad application areas have been investigated including: propulsion/turbomachinery applications, turbulent flow diagnosis, experimentalaerodynamics, micro-flow control and unmanned aerial vehicle (UAV)/micro aerial vehicle (MAV) applications.

Design/methodology/approach

The first part of the paper deals with an introduction to MEMS pressure sensors and mathematical relations for its fabrication. The second part covers pressure sensing principles followed by the application of MEMS pressure sensors in five major fields of aerospace industry.

Findings

In this paper, various pressure sensing principles in MEMS and applications of MEMS technology in the aerospace industry have been reviewed. Five application fields have been investigated including: Propulsion/Turbomachinery applications, turbulent flow diagnosis, experimental aerodynamics, micro-flow control and UAV/MAV applications. Applications of MEMS sensors in the aerospace industry are quite limited due to requirements of very high accuracy, high reliability and harsh environment survivability. However, the potential for growth of this technology is foreseen due to inherent features of MEMS sensors’ being light weight, low cost, ease of batch fabrication and capability of integration with electric circuits. All these advantages are very relevant to the aerospace industry. This work is an endeavor to present a comprehensive review of such MEMS pressure sensors, which are used in the aerospace industry and have been reported in recent literature.

Originality/value

As per the author’s understanding, usage of MEMS pressure sensors in the aerospace industry is quite limited due to cost constraints and indirect measurement approaches owing to the inability to locate sensors in harsh environments. Present work is a prime effort in summarizing the published literature for application of MEMS pressure sensors in the said field. Five broad application areas have been investigated including: propulsion/turbomachinery applications, turbulent flow diagnosis, experimental aerodynamics, micro-flow control and UAV/MAV applications.

Details

Sensor Review, vol. 39 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 March 2005

M. McSherry, C. Fitzpatrick and E. Lewis

There are various temperature measuring systems presented in the literature and on the market today. Over the past number of years a range of luminescent‐based optical fibre…

1445

Abstract

Purpose

There are various temperature measuring systems presented in the literature and on the market today. Over the past number of years a range of luminescent‐based optical fibre sensors have been reported and developed which include fluorescence and optical scattering. These temperature sensors incorporate materials that emit wavelength shifted light when excited by an optical source. The majority of commercially available systems are based on fluorescent properties.Design/methodology/approach – Many published journal articles and conference papers were investigated and existing temperature sensors in the market were examined.Findings – In optical thermometry, the light is used to carry temperature information. In many cases optical fibres are used to transmit and receive this light. Optical fibres are immune to electromagnetic interference and are small in size, which allows them to make very localized measurements. A temperature sensitive material forms a sensor and the subsequent optical data are transmitted via optical fibres to electronic detection systems. Two keys areas were investigated namely fluorescence based temperature sensors and temperature sensors involving optical scattering.Originality/value – An overview of optical fibre temperature sensors based on luminescence is presented. This review provides a summary of optical temperature sensors, old and new which exist in today's world of sensing.

Details

Sensor Review, vol. 25 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 14 March 2024

Gülçin Baysal

The aim of this review is to present together the studies on textile-based moisture sensors developed using innovative technologies in recent years.

Abstract

Purpose

The aim of this review is to present together the studies on textile-based moisture sensors developed using innovative technologies in recent years.

Design/methodology/approach

The integration levels of the sensors studied with the textile materials are changing. Some research teams have used a combination of printing and textile technologies to produce sensors, while a group of researchers have used traditional technologies such as weaving and embroidery. Others have taken advantage of new technologies such as electro-spinning, polymerization and other techniques. In this way, they tried to combine the good working efficiency of the sensors and the flexibility of the textile. All these approaches are presented in this article.

Findings

The presentation of the latest technologies used to develop textile sensors together will give researchers an idea about new studies that can be done on highly sensitive and efficient textile-based moisture sensor systems.

Originality/value

In this paper humidity sensors have been explained in terms of measuring principle as capacitive and resistive. Then, studies conducted in the last 20 years on the textile-based humidity sensors have been presented in detail. This is a comprehensive review study that presents the latest developments together in this area for researchers.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of over 11000