Search results

1 – 10 of over 47000
Article
Publication date: 1 March 1993

Smyly Bannerman

Discusses the methods of sensitivity analysis in use generally andby the property appraisal profession. Proposes a simplified structuredand systematic technique of selecting…

2033

Abstract

Discusses the methods of sensitivity analysis in use generally and by the property appraisal profession. Proposes a simplified structured and systematic technique of selecting critical or sensitive factors for sensitivity analysis in property development and investment appraisal. Concludes that sensitivity analysis has become an integral part of property appraisal.

Details

Journal of Property Valuation and Investment, vol. 11 no. 3
Type: Research Article
ISSN: 0960-2712

Keywords

Article
Publication date: 3 April 2017

Xin Li, Jianzhong Shang and Hong Zhu

This paper aims to consider a problem of assembly sensitivity in a multi-station assembly process. The authors focus on the assembly process of aircrafts, which includes cabins…

Abstract

Purpose

This paper aims to consider a problem of assembly sensitivity in a multi-station assembly process. The authors focus on the assembly process of aircrafts, which includes cabins and inertial navigation system (INSs), and establish the assembly process state space model for their assembly sensitivity research.

Design/methodology/approach

To date, the process-related errors that cause large variations in key product characteristics remains one of the most critical research topics in assembly sensitivity analysis. This paper focuses on the unique challenges brought about by the multi-station system: a system-level model for characterizing the variation propagation in the entire process, and the necessity of describing the system response to variation inputs at both station-level and single fixture-level scales. State space representation is used to describe the propagation of variation in such a multi-station process, incorporating assembly process parameters such as fixture-locating layout at individual stations and station-to-station locating layout change.

Findings

Following the sensitivity analysis in control theory, a group of hierarchical sensitivity indices is defined and expressed in terms of the system matrices in the state space model, which are determined by the given assembly process parameters.

Originality/value

A case study of assembly sensitivity for a multi-station assembly process illustrates and validates the proposed methodology.

Details

Assembly Automation, vol. 37 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 June 2003

B.J. Henz, K.K. Tamma, R. Kanapady, N.D. Ngo and P.W. Chung

The resin transfer molding process for composites manufacturing consists of either of two considerations, namely, the fluid flow analysis through a porous fiber preform where the…

1003

Abstract

The resin transfer molding process for composites manufacturing consists of either of two considerations, namely, the fluid flow analysis through a porous fiber preform where the location of the flow front is of fundamental importance, and the combined flow/heat transfer/cure analysis. In this paper, the continuous sensitivity formulations are developed for the process modeling of composites manufactured by RTM to predict, analyze, and optimize the manufacturing process. Attention is focused here on developments for isothermal flow simulations, and various illustrative examples are presented for sensitivity analysis of practical applications which help serve as a design tool in the process modeling stages.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 13 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 September 2020

Yidu Zhang, Yongshou Liu and Qing Guo

This paper aims to develop a method for evaluating the failure probability and global sensitivity of multiple failure modes based on convex-probability hybrid uncertainty.

Abstract

Purpose

This paper aims to develop a method for evaluating the failure probability and global sensitivity of multiple failure modes based on convex-probability hybrid uncertainty.

Design/methodology/approach

The uncertainty information of the input variable is considered as convex-probability hybrid uncertainty. Moment-independent variable global sensitivity index based on the system failure probability is proposed to quantify the effect of the input variable on the system failure probability. Two-mode sensitivity indices are adopted to characterize the effect of each failure mode on the system failure probability. The method based on active learning Kriging (ALK) model with a truncated candidate regions (TCR) is adopted to evaluate the systems failure probability, as well as sensitivity index and this method is termed as ALK-TCR.

Findings

The results of five examples demonstrate the effectiveness of the sensitivity index and the efficiency of the ALK-TCR method in solving the problem of multiple failure modes based on the convex-probability hybrid uncertainty.

Originality/value

Convex-probability hybrid uncertainty is considered on system reliability analysis. Moment-independent variable sensitivity index based on the system failure probability is proposed. Mode sensitivity indices are extended to hybrid uncertain reliability model. An effective global sensitivity analysis approach is developed for the multiple failure modes based on convex-probability hybrid uncertainty.

Article
Publication date: 18 January 2024

Zaihua Luo, Juliang Xiao, Sijiang Liu, Mingli Wang, Wei Zhao and Haitao Liu

This paper aims to propose a dynamic parameter identification method based on sensitivity analysis for the 5-degree of freedom (DOF) hybrid robots, to solve the problems of too…

Abstract

Purpose

This paper aims to propose a dynamic parameter identification method based on sensitivity analysis for the 5-degree of freedom (DOF) hybrid robots, to solve the problems of too many identification parameters, complex model, difficult convergence of optimization algorithms and easy-to-fall into a locally optimal solution, and improve the efficiency and accuracy of dynamic parameter identification.

Design/methodology/approach

First, the dynamic parameter identification model of the 5-DOF hybrid robot was established based on the principle of virtual work. Then, the sensitivity of the parameters to be identified is analyzed by Sobol’s sensitivity method and verified by simulation. Finally, an identification strategy based on sensitivity analysis was designed, experiments were carried out on the real robot and the results were verified.

Findings

Compared with the traditional full-parameter identification method, the dynamic parameter identification method based on sensitivity analysis proposed in this paper converges faster when optimized using the genetic algorithm, and the identified dynamic model has higher prediction accuracy for joint drive forces and torques than the full-parameter identification models.

Originality/value

This work analyzes the sensitivity of the parameters to be identified in the dynamic parameter identification model for the first time. Then a parameter identification method is proposed based on the results of the sensitivity analysis, which can effectively reduce the parameters to be identified, simplify the identification model, accelerate the convergence of the optimization algorithm and improve the prediction accuracy of the identified model for the joint driving forces and torques.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 August 1996

Wakae Kozukue and Ichiro Hagiwara

One of the authors has already formulated the sensitivity analysis for a coupled structural‐acoustic system and applied the method in order to obtain modal sensitivities and modal…

Abstract

One of the authors has already formulated the sensitivity analysis for a coupled structural‐acoustic system and applied the method in order to obtain modal sensitivities and modal frequency response sensitivities for the sound pressure level at peak frequency points. However, for the development of a vehicle, not only the reduction of peak frequency level but also that of integral of noise for a specified frequency range is desired. For investigating this it is considered effective to use sensitivities of integrated sound pressure level for a specified frequency range. Thus a “sound pressure level integral” has been developed, which is the integrated value of sound pressure level, and further “sensitivity of sound pressure level integral”. Shows how an integral analysis process is performed, and how vibration and noise can be reduced.

Details

Engineering Computations, vol. 13 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 November 2018

Xuchun Ren and Sharif Rahman

This paper aims to present a new method, named as augmented polynomial dimensional decomposition (PDD) method, for robust design optimization (RDO) and reliability-based design…

Abstract

Purpose

This paper aims to present a new method, named as augmented polynomial dimensional decomposition (PDD) method, for robust design optimization (RDO) and reliability-based design optimization (RBDO) subject to mixed design variables comprising both distributional and structural design variables.

Design/methodology/approach

The method involves a new augmented PDD of a high-dimensional stochastic response for statistical moments and reliability analyses; an integration of the augmented PDD, score functions, and finite-difference approximation for calculating the sensitivities of the first two moments and the failure probability with respect to distributional and structural design variables; and standard gradient-based optimization algorithms.

Findings

New closed-form formulae are presented for the design sensitivities of moments that are simultaneously determined along with the moments. A finite-difference approximation integrated with the embedded Monte Carlo simulation of the augmented PDD is put forward for design sensitivities of the failure probability.

Originality/value

In conjunction with the multi-point, single-step design process, the new method provides an efficient means to solve a general stochastic design problem entailing mixed design variables with a large design space. Numerical results, including a three-hole bracket design, indicate that the proposed methods provide accurate and computationally efficient sensitivity estimates and optimal solutions for RDO and RBDO problems.

Article
Publication date: 5 October 2022

Raghavendra Rao N.S. and Chitra A.

The purpose of this study is to extend a sensitivity-based reliability technique for the processors deployed in industrial drive (ID).

Abstract

Purpose

The purpose of this study is to extend a sensitivity-based reliability technique for the processors deployed in industrial drive (ID).

Design/methodology/approach

The processor provides flexible operation, re-configurability, and adaptable compatibility in industrial motor drive system. A sensitivity-based model allows a robust tool for validating the system design. Sensitivity is the probability of a partial failure rate for a distributed variable; sensitivity and failure rates are also complementary. Conversely, traditional power electronic components reliability estimating standards have overlooked it, and it is essential to update them to account for the sensitivity parameter. A new sensitivity-based reliability prediction methodology for a typical 32-bit microprocessor operating at 30ºC deployed in ID is presented to fill this gap. The proposed techniques are compared with the estimated processor reliability values obtained from various reliability standards using the validated advanced logistics development tool. The main contribution of this work is to provide a sensitivity extended reliability method over the conventional method directing toward improving reliability, availability, and maintainability in the design of ID.

Findings

The analysis shows that the sensitivity of the processor’s circuit increases due to increases in complexity of the system by reducing the overall mean time between failure upon comparing among conventional reliability standards.

Originality/value

The significance of this paper lies in the overall, sensitivity-based reliability technique for processors in comparison to the traditional reliability complexity in IDs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 October 2010

R. Chowdhury and S. Adhikari

High‐dimensional model representation (HDMR) is a general set of quantitative model assessment and analysis tools for capturing the high‐dimensional relationships between sets of…

Abstract

Purpose

High‐dimensional model representation (HDMR) is a general set of quantitative model assessment and analysis tools for capturing the high‐dimensional relationships between sets of input and output model variables. It is an efficient formulation of the system response, if higher‐order cooperative effects are weak, allowing the physical model to be captured by the lower‐order terms. The paper's aim is to develop a new computational tool for estimating probabilistic sensitivity of structural/mechanical systems subject to random loads, material properties and geometry.

Design/methodology/approach

When first‐order HDMR approximation of the original high‐dimensional limit state is not adequate to provide the desired accuracy to the sensitivity analysis, this paper presents an enhanced HDMR (eHDMR) method to represent the higher‐order terms of HDMR expansion by expressions similar to the lower‐order ones with monomial multipliers. The accuracy of the HDMR expansion can be significantly improved using preconditioning with a minimal number of additional input‐output samples without directly invoking the determination of second‐ and higher‐order terms. As a part of this effort, the efficacy of HDMR, which is recently applied to uncertainty analysis, is also demonstrated. The method is based on computing eHDMR approximation of system responses and score functions associated with probability distribution of a random input. Surrogate model is constructed using moving least squares interpolation formula. Once the surrogate model form is defined, both the probabilistic response and its sensitivities can be estimated from a single probabilistic analysis, without requiring the gradients of performance functions.

Findings

The results of two numerical examples involving mathematical function and structural/solid‐mechanics problems indicate that the sensitivities obtained using eHDMR approximation provide significant accuracy when compared with the conventional Monte Carlo method, while requiring fewer original model simulations.

Originality/value

This is the first time where application of eHDMR concepts is explored in the stochastic sensitivity analysis. The present computational approach is valuable to the practical modelling and design community.

Details

Engineering Computations, vol. 27 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 May 2001

Stefan Schwarz and Ekkehard Ramm

The present contribution deals with the sensitivity analysis and optimization of structures for path‐dependent structural response. Geometrically as well as materially non‐linear…

1148

Abstract

The present contribution deals with the sensitivity analysis and optimization of structures for path‐dependent structural response. Geometrically as well as materially non‐linear behavior with hardening and softening is taken into account. Prandtl‐Reuss‐plasticity is adopted so that not only the state variables but also their sensitivities are path‐dependent. Because of this the variational direct approach is preferred for the sensitivity analysis. For accuracy reasons the sensitivity analysis has to be consistent with the analysis method evaluating the structural response. The proposed sensitivity analysis as well as its application in structural optimization is demonstrated by several examples.

Details

Engineering Computations, vol. 18 no. 3/4
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 47000