Search results

1 – 10 of over 7000
Article
Publication date: 4 April 2020

Robert Bogue

This paper aims to provide details of the use of sensing skins by robots through reference to commercial products and recent research.

Abstract

Purpose

This paper aims to provide details of the use of sensing skins by robots through reference to commercial products and recent research.

Design/methodology/approach

Following an introduction, this paper first summarises the commercial status of robotic sensing skins. It then provides examples of recent safety skin research and is followed by a discussion of processing schemes applied to multiple sensor skin systems including humanoid robots. Examples of research into soft, flexible skins follow and the paper concludes with a short discussion.

Findings

The commercialisation of sensing skins has been driven by safety applications in the emerging cobot sector, and a market is emerging for skins that can be retrofitted to conventional robots. Sensing skin research is widespread and covers a multitude of sensing principles, technologies, materials and signal processing schemes. This will yield skins which could impart advanced sensory capabilities to robots and potential future uses include agile manipulation, search and rescue, personal care and advanced robotic prosthetics.

Originality/value

This paper provides details of the current role of sensing skins in robots and an insight into recent research.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 April 2019

Robert Bogue

This paper aims to illustrate the increasingly important role played by tactile sensing in robotics by considering three specific fields of application.

Abstract

Purpose

This paper aims to illustrate the increasingly important role played by tactile sensing in robotics by considering three specific fields of application.

Design/methodology/approach

Following a short introduction, this paper first provides details of tactile sensing principles, technologies, products and research. The following sections consider tactile sensing applications in robotic surgery, collaborative robots and robotic grippers. Finally, brief conclusions are drawn.

Findings

Tactile sensors are the topic of an extensive and technologically diverse research effort, with sensing skins attracting particular attention. Many products are now available commercially. New generations of surgical robots are emerging which use tactile sensing to provide haptic feedback, thereby eliminating the surgeon’s total reliance on visual control. Many collaborative robots use tactile and proximity sensing as key safety mechanisms and some use sensing skins. Some skins can detect both human proximity and physical contact. Sensing skins that can be retrofitted have been developed. Commercial tactile sensors have been incorporated into robotic grippers, notably anthropomorphic types, and allow the handling of delicate objects and those with varying shapes and sizes. Tactile sensing uses will inevitably increase because of the ever-growing numbers of robots interacting with humans.

Originality/value

This study provides a detailed account of the growing use of tactile sensing in robotics in three key areas of application.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 21 August 2017

Robert Bogue

This paper aims to provide details of recent developments in robotic tactile sensing.

Abstract

Purpose

This paper aims to provide details of recent developments in robotic tactile sensing.

Design/methodology/approach

Following a short introduction, this paper first provides an overview of tactile sensing effects and technologies. It then discusses recent developments in tactile sensing skins. Tactile sensing for robotic prosthetics and hands is then considered and is followed by a discussion of “tactile intelligence”. Various experimental results are included. Finally, brief concluding comments are drawn.

Findings

This shows that many advanced, sensitive and technologically varied tactile sensing devices are being developed. These devices are expected to impart robots with a range of enhanced capabilities such as improved gripping and manipulation, object recognition, the control and robotic hands and prosthetics and collision detection.

Originality/value

Tactile sensing has an increasingly important role to play in robotics, and this paper provides a technical insight into a number of recent developments and their applications.

Details

Industrial Robot: An International Journal, vol. 44 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 17 February 2012

Robert Bogue

This paper aims to provide a review of recent developments in selected fields of smart material technology.

4133

Abstract

Purpose

This paper aims to provide a review of recent developments in selected fields of smart material technology.

Design/methodology/approach

Following a brief introduction to smart materials, this paper considers research into three classes that are presently attracting particular interest: self‐healing materials; smart sensing materials and sensing skins; and shape‐changing materials.

Findings

This shows that each of these fields is the topic of a major research effort and although few products are yet available commercially, they offer great future potential due to their unique capabilities. A multitude of uses are anticipated in the aerospace, defence, automotive, civil engineering, medical, robotics and other industries.

Originality/value

This paper provides a topical, technical insight into developments in three classes of smart materials.

Details

Assembly Automation, vol. 32 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 23 October 2007

Mette Ramsgard Thomsen

This paper aims to discuss the conceptualisation, design and realisation of a robotic membrane. Presenting research taking place between the cross‐over among architecture…

Abstract

Purpose

This paper aims to discuss the conceptualisation, design and realisation of a robotic membrane. Presenting research taking place between the cross‐over among architecture, technical textiles and computer science, the paper seeks to explore the theoretical as well as the practical foundations for the making of a dynamic architecture.

Design/methodology/approach

The project employs an architectural design method developing working demonstrators. The paper asks how a material can be described through its behavioural as well as its formal properties. As new materials such as conductive and resistive fibres as well as smart memory alloys and polymers are developed, it becomes possible to create new hybrid materials that incorporate the possibility for state change.

Findings

The paper presents the first explorations into the making of architectural membranes that integrate systems for steering using traditional textile technologies. This paper presents a series of architectural investigations and models that seek to explore the conceptual, computational and the technological challenges of a robotic membrane.

Originality/value

The paper presents original thinking and technical innovation into the making of textile spaces.

Details

Kybernetes, vol. 36 no. 9/10
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 9 July 2021

Rob Bogue

This paper aims to provide details of recent advances in robotic prostheses with the emphasis on the control and sensing technologies.

Abstract

Purpose

This paper aims to provide details of recent advances in robotic prostheses with the emphasis on the control and sensing technologies.

Design/methodology/approach

Following a short introduction, this paper first discusses the main robotic prosthesis control strategies. It then provides details of recent research and developments using non-invasive and invasive brain–computer interfaces (BCIs). These are followed by examples of studies that seek to confer robotic prostheses with sensory feedback. Finally, brief conclusions are drawn.

Findings

A significant body of research is underway involving electromyographic and BCI technologies, often in combination with advanced data processing and analysis schemes. This has the potential to yield robotic prostheses with advanced capabilities such as greater dexterity and sensory feedback.

Originality/value

This illustrates how electromyographic, BCI, signal processing and sensor technologies are being used to create robotic prostheses with enhanced functionality.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 26 March 2021

Riyaz Ali Shaik and Elizabeth Rufus

This paper aims to review the shape sensing techniques using large area flexible electronics (LAFE). Shape perception of humanoid robots using tactile data is mainly focused.

Abstract

Purpose

This paper aims to review the shape sensing techniques using large area flexible electronics (LAFE). Shape perception of humanoid robots using tactile data is mainly focused.

Design/methodology/approach

Research papers on different shape sensing methodologies of objects with large area, published in the past 15 years, are reviewed with emphasis on contact-based shape sensors. Fiber optics based shape sensing methodology is discussed for comparison purpose.

Findings

LAFE-based shape sensors of humanoid robots incorporating advanced computational data handling techniques such as neural networks and machine learning (ML) algorithms are observed to give results with best resolution in 3D shape reconstruction.

Research limitations/implications

The literature review is limited to shape sensing application either two- or three-dimensional (3D) LAFE. Optical shape sensing is briefly discussed which is widely used for small area. Optical scanners provide the best 3D shape reconstruction in the noncontact-based shape sensing; here this paper focuses only on contact-based shape sensing.

Practical implications

Contact-based shape sensing using polymer nanocomposites is a very economical solution as compared to optical 3D scanners. Although optical 3D scanners can provide a high resolution and fast scan of the 3D shape of the object, they require line of sight and complex image reconstruction algorithms. Using LAFE larger objects can be scanned with ML and basic electronic circuitory, which reduces the price hugely.

Social implications

LAFE can be used as a wearable sensor to monitor critical biological parameters. They can be used to detect shape of large body parts and aid in designing prosthetic devices. Tactile sensing in humanoid robots is accomplished by electronic skin of the robot which is a prime example of human–machine interface at workplace.

Originality/value

This paper reviews a unique feature of LAFE in shape sensing of large area objects. It provides insights from mechanical, electrical, hardware and software perspective in the sensor design. The most suitable approach for large object shape sensing using LAFE is also suggested.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Content available
Article
Publication date: 13 November 2023

Sheuli Paul

This paper presents a survey of research into interactive robotic systems for the purpose of identifying the state of the art capabilities as well as the extant gaps in this…

1003

Abstract

Purpose

This paper presents a survey of research into interactive robotic systems for the purpose of identifying the state of the art capabilities as well as the extant gaps in this emerging field. Communication is multimodal. Multimodality is a representation of many modes chosen from rhetorical aspects for its communication potentials. The author seeks to define the available automation capabilities in communication using multimodalities that will support a proposed Interactive Robot System (IRS) as an AI mounted robotic platform to advance the speed and quality of military operational and tactical decision making.

Design/methodology/approach

This review will begin by presenting key developments in the robotic interaction field with the objective of identifying essential technological developments that set conditions for robotic platforms to function autonomously. After surveying the key aspects in Human Robot Interaction (HRI), Unmanned Autonomous System (UAS), visualization, Virtual Environment (VE) and prediction, the paper then proceeds to describe the gaps in the application areas that will require extension and integration to enable the prototyping of the IRS. A brief examination of other work in HRI-related fields concludes with a recapitulation of the IRS challenge that will set conditions for future success.

Findings

Using insights from a balanced cross section of sources from the government, academic, and commercial entities that contribute to HRI a multimodal IRS in military communication is introduced. Multimodal IRS (MIRS) in military communication has yet to be deployed.

Research limitations/implications

Multimodal robotic interface for the MIRS is an interdisciplinary endeavour. This is not realistic that one can comprehend all expert and related knowledge and skills to design and develop such multimodal interactive robotic interface. In this brief preliminary survey, the author has discussed extant AI, robotics, NLP, CV, VDM, and VE applications that is directly related to multimodal interaction. Each mode of this multimodal communication is an active research area. Multimodal human/military robot communication is the ultimate goal of this research.

Practical implications

A multimodal autonomous robot in military communication using speech, images, gestures, VST and VE has yet to be deployed. Autonomous multimodal communication is expected to open wider possibilities for all armed forces. Given the density of the land domain, the army is in a position to exploit the opportunities for human–machine teaming (HMT) exposure. Naval and air forces will adopt platform specific suites for specially selected operators to integrate with and leverage this emerging technology. The possession of a flexible communications means that readily adapts to virtual training will enhance planning and mission rehearsals tremendously.

Social implications

Interaction, perception, cognition and visualization based multimodal communication system is yet missing. Options to communicate, express and convey information in HMT setting with multiple options, suggestions and recommendations will certainly enhance military communication, strength, engagement, security, cognition, perception as well as the ability to act confidently for a successful mission.

Originality/value

The objective is to develop a multimodal autonomous interactive robot for military communications. This survey reports the state of the art, what exists and what is missing, what can be done and possibilities of extension that support the military in maintaining effective communication using multimodalities. There are some separate ongoing progresses, such as in machine-enabled speech, image recognition, tracking, visualizations for situational awareness, and virtual environments. At this time, there is no integrated approach for multimodal human robot interaction that proposes a flexible and agile communication. The report briefly introduces the research proposal about multimodal interactive robot in military communication.

Article
Publication date: 1 March 2018

Yung Sin Chong, Keat Hoe Yeoh, Pei Ling Leow and Pei Song Chee

This paper aims to report a stretchable piezoresistive strain sensor array that can detect various static and dynamic stimuli, including bending, normal force, shear stress and…

Abstract

Purpose

This paper aims to report a stretchable piezoresistive strain sensor array that can detect various static and dynamic stimuli, including bending, normal force, shear stress and certain range of temperature variation, through sandwiching an array of conductive blocks, made of multiwalled carbon nanotubes (MWCNTs) and polydimethylsiloxane (PDMS) composite. The strain sensor array induces localized resistance changes at different external mechanical forces, which can be potentially implemented as electronic skin.

Design/methodology/approach

The working principle is the piezoresistivity of the strain sensor array is based on the tunnelling resistance connection between the fillers and reformation of the percolating path when the PDMS and MWCNT composite deforms. When an external compression stimulus is exerted, the MWCNT inter-filler distance at the conductive block array reduces, resulting in the reduction of the resistance. The resistance between the conductive blocks in the array, on the other hand, increases when the strain sensor is exposed to an external stretching force. The methodology was as follows: Numerical simulation has been performed to study the pressure distribution across the sensor. This method applies two thin layers of conductive elastomer composite across a 2 × 3 conductive block array, where the former is to detect the stretchable force, whereas the latter is to detect the compression force. The fabrication of the strain sensor consists of two main stages: fabricating the conducting block array (detect compression force) and depositing two thin conductive layers (detect stretchable force).

Findings

Characterizations have been performed at the sensor pressure response: static and dynamic configuration, strain sensing and temperature sensing. Both pressure and strain sensing are studied in terms of the temporal response. The temporal response shows rapid resistance changes and returns to its original value after the external load is removed. The electrical conductivity of the prototype correlates to the temperature by showing negative temperature coefficient material behaviour with the sensitivity of −0.105 MΩ/°C.

Research limitations/implications

The conductive sensor array can potentially be implemented as electronic skin due to its reaction with mechanical stimuli: compression and stretchable pressure force, strain sensing and temperature sensing.

Originality/value

This prototype enables various static and dynamic stimulus detections, including bending, normal force, shear stress and certain range of temperature variation, through sandwiching an array of conductive blocks, made of MWCNT and PDMS composite. Conventional design might need to integrate different microfeatures to perform the similar task, especially for dynamic force sensing.

Details

Sensor Review, vol. 38 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of over 7000