Search results

1 – 10 of 34
Article
Publication date: 2 November 2015

Yujie Zhang and Amir Poursaee

This paper aims to clarify the semi-conductive behavior of the passive layer formed in concrete environment without and with presence of chloride ions under different loading…

1245

Abstract

Purpose

This paper aims to clarify the semi-conductive behavior of the passive layer formed in concrete environment without and with presence of chloride ions under different loading conditions. Passivation and depassivation of steel play an essential role in the subsequent stages of the corrosion process. Due to the nature of passive films on metals, they show electrochemical properties of a semi-conductor.

Design/methodology/approach

A C-ring model was proposed in this experiment to induce stress on the specimens. Specimens under different levels of compressive and tensile loadings were exposed to chloride-free and chloride-contaminated solutions and their semi-conductive behavior was investigated using Mott–Schottky technique.

Findings

Irrespective of the type and magnitude of the applied load, the passive film on rebars in simulated concrete pore solution is a highly disordered n-type semi-conductor. In all specimens, the presence of chloride ions decreases the slope of the Mott-Schottky plots, the donor density and the space charge layer thickness, which leads to a thinner passive film. Results indicate that steel specimens immersed in chloride-free pore solution under tensile loadings passivate more rapidly compared to those under compressive loadings. However, the situation in chloride-contaminated solution is different, and steel under tensile stress exhibits more corrosion than steel under compressive stress or under no load.

Originality/value

Reinforced concrete structures inevitably experience variable mechanical loads, and continuous degradation from aggressive environments. Therefore, it is imperative to study the synergic impact of different types of mechanical loadings and exposure to chloride ions on this process. This paper fulfils this need.

Details

Anti-Corrosion Methods and Materials, vol. 62 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 20 January 2012

Yidong Zhang and Weiwei He

The purpose of this paper is to demonstrate the I‐V characteristics of ZnO film on Si substrates with Ag buffer layer by conductive atomic force (C‐AFM).

Abstract

Purpose

The purpose of this paper is to demonstrate the I‐V characteristics of ZnO film on Si substrates with Ag buffer layer by conductive atomic force (C‐AFM).

Design/methodology/approach

An Ag buffer layer and Zn film was first deposited on silicon substrate by RF‐sputtering deposition method from high pure Ag and Zn target, respectively. Then, the deposited film was sintered in air at 500°C for 1 h.

Findings

The structures and morphologies of the prepared films were characterized by X‐ray diffraction (XRD), energy dispersive spectrum (EDS), atomic force microscopy (AFM), and C‐AFM. The results show that the prepared ZnO films with Ag buffer layer have a good crystallinity and surface morphology. Interestingly, the I‐V curve of ZnO film exhibited typical characteristics of semi‐conductive oxide under the conductive Ag buffer layer.

Originality/value

The paper demonstrates, by C‐AFM, that the ZnO/Ag‐buffer/Si exhibits excellent crystal structure, morphology and typical I‐V characteristics.

Details

Microelectronics International, vol. 29 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 16 March 2012

Nilgün Kızılcan and Özlem Tamküpeli Koşar

The purpose of this paper is to report the synthesis of resins having conducting and fluorescence properties, with carbazole and oligocarbazole with a one step method of in situ

Abstract

Purpose

The purpose of this paper is to report the synthesis of resins having conducting and fluorescence properties, with carbazole and oligocarbazole with a one step method of in situ modification of ketonic resin. Cyclohexanone‐formaldehyde (CFR), and acetophenone‐formaldehyde (AFR) resins were in situ modified with carbazole in the presence of sodium hydroxide.

Design/methodology/approach

Carbazole modified ketonic resins were synthesised by the condensation reaction of Cz, formaldehyde and ketone. Oligo carbazole was synthesised by redox reaction of carbazole and ceric ammonium nitrate (CAN). Then, for the in situ modification of oligo carbazole modified ketonic resin, reaction mixture of oligocarbazole carbazole was added to the cyclohexanone/formaldehyde solution.

Findings

The carbazole modified cyclohexanone‐formaldehyde and acetophenone formaldehyde resins have conductivity values of 10−5‐10−6 S/cm and may be considered as semi‐conductive ketonic resins. These new carbazole modified ketonic resins (CCzFR, ACzFR) have fluorescence properties.

Research limitations/implications

This study focused on obtaining a conductive and fluorescence resin using a carbazole monomer which is an insulator.

Practical implications

This study provides technical information for the synthesis of fluorescence comonomer.

Originality/value

New CCzFR, ACzFR comonomers were synthesised. These comonomers have higher Tm values than CFR and AFR alone and also have fluorescence property.

Details

Pigment & Resin Technology, vol. 41 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 22 March 2011

Yogesha Subbaiah, Venkatakrishna Kaje and Ampar Chitharanjan Hegde

The purpose of this paper is to develop and optimize anti‐corrosive multi‐layered coatings of zinc‐nickel alloy on carbon steel.

Abstract

Purpose

The purpose of this paper is to develop and optimize anti‐corrosive multi‐layered coatings of zinc‐nickel alloy on carbon steel.

Design/methodology/approach

A variety of composition‐modulated multi‐layer alloy (CMMA) coatings of zinc‐nickel were developed on a carbon steel substrate by cyclic changes in cathode current during electrodeposition, coupled with variation of the thicknesses of the individual layers. The corrosion behavior of the coatings was studied in 5 percent NaCl solution by electrochemical methods. Cyclic cathode current densities (CCCDs) and the number of alloy layers were optimized for highest performance of the coatings against corrosion. The factors responsible for improved corrosion resistance were analyzed in terms of change in the intrinsic electrical properties of the capacitance value at the electrical double layer that was associated with micro/nanometric layering. The formation of the semi‐conductive surface film, which was responsible for the improved corrosion resistance, was supported by a Mott‐Schottky plot and the cyclic polarization study. The formation of multi‐layered deposit and the mechanism of corrosion degradation of the coating were analyzed using scanning electron microscopy.

Findings

CMMA coatings with an optimal configuration of (Zn‐Ni)2.0/4.0/300 showed ∼35 times better corrosion resistance compared to a monolithic (Zn‐Ni)3.0 alloy coating of the same thickness. The peak performance was attributed to the change in intrinsic electrical properties of the coating and this conclusion was supported by dielectric spectroscopy.

Originality/value

The paper describes the optimization of CCCD and the number of deposited layers by development of electrolytic deposition of anti‐corrosive multi‐layered zinc‐nickel coatings from a single plating technique.

Details

Anti-Corrosion Methods and Materials, vol. 58 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 January 1995

Water‐borne coatings Increasing use of water‐borne emulsion coatings for original equipment manufacturers (OEM) and product finishes is requiring greater efficiency in…

Abstract

Water‐borne coatings Increasing use of water‐borne emulsion coatings for original equipment manufacturers (OEM) and product finishes is requiring greater efficiency in coalescing‐aid solvents, an Eastman Chemical Co. representative said at a recent Chicago Society for Coatings Technology meeting. Eastman's Ronald K. Litton said emulsions designed for OEM and industrial applications have higher glass transition temperatures than emulsions used in architectural paints. That requires higher levels of coalescing aid to achieve good film formation. As a result, coalescing‐aid efficiency with a given emulsion system is a key factor, both from environmental (lower‐volatile organic compound (VOC)) and economic standpoints. Several properties should be examined when a coalescing aid is selected for water‐borne emulsion industrial coatings. The formulator should consider the evaporation rate and solubility parameter of the coalescing aid, along with its distribution pattern in a specific emulsion system. Those properties are important in defining the efficiency of a coalescing aid in terms of its ability to lower the minimum film‐forming temperature (MFFT) of an emulsion system. The coalescing aids also must be hydrolytically stable to provide minimum loss of efficiency due to ageing, Litton said. He showed several charts designed to assist formulators in the selection of optimum coalescing aids for emulsion systems. At the same conference, James T.K. Woo of The Glidden Co. discussed the grafting of high‐molecular‐weight epoxy resins with styrene‐methacrylic acid monomers, producing a water‐reducible copolymer. Grafting takes place at the aliphatic carbons of the epoxy resin, according to carbon‐13 NMR spectroscopy. The study was a follow‐up to a paper presented 14 years ago. Woo said recent research indicates that five grafting “peaks” were identified on a 400 megacycle carbon‐13 nuclear magnetic resonance spectroscopy instrument. The paper provided several theoretical calculation on grafting. Three of the graft peaks resulted from grafting at the secondary methylene carbons ‐CH2‐ and two resulted from grafting at the tertiary carbon ‐CH‐. The ratio of grafting at ‐CH2‐ to ‐CH‐appears to be 2.7:1 — lower than the 4:1 ratio of protons present on the aliphatic carbons that are susceptible to hydrogen abstraction leading to grafting. That indicates that the tertiary hydrogen is somwhat more susceptible to grafting than the methylene hydrogens, he said.

Details

Pigment & Resin Technology, vol. 24 no. 1
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 23 April 2020

Anan Zhang, Jiahui He, Yu Lin, Qian Li, Wei Yang and Guanglong Qu

Considering the problem that the high recognition rate of deep learning requires the support of mass data, this study aims to propose an insulating fault identification method…

Abstract

Purpose

Considering the problem that the high recognition rate of deep learning requires the support of mass data, this study aims to propose an insulating fault identification method based on small data set convolutional neural network (CNN).

Design/methodology/approach

Because of the chaotic characteristics of partial discharge (PD) signals, the equivalent transformation of the PD signal of unit power frequency period is carried out by phase space reconstruction to derive the chaotic features. At the same time, geometric, fractal, entropy and time domain features are extracted to increase the volume of feature data. Finally, the combined features are constructed and imported into CNN to complete PD recognition.

Findings

The results of the case study show that the proposed method can realize the PD recognition of small data set and make up for the shortcomings of the methods based on CNN. Also, the 1-CNN built in this paper has better recognition performance for four typical insulation faults of cable accessories. The recognition performance is improved by 4.37% and 1.25%, respectively, compared with similar methods based on support vector machine and BPNN.

Originality/value

In this paper, a method of insulation fault recognition based on CNN with small data set is proposed, which can solve the difficulty to realize insulation fault recognition of cable accessories and deep data mining because of insufficient measure data.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 March 2004

Mark Lowe, Alison King, Elizabeth Lovett and Thomas Papakostas

The continued evolution of computer technology requires us now more than ever to investigate and understand man‐machine interfaces. Physical interface peripherals such as…

2326

Abstract

The continued evolution of computer technology requires us now more than ever to investigate and understand man‐machine interfaces. Physical interface peripherals such as touch‐screens and force feedback systems demand a comprehension of the tactile forces involved. To accomplish this, flexible, easy‐to‐install, minimally intrusive sensors are essential. Thanks to the development of such sensors, many doors have been opened for innovative haptic applications in a variety of fields including medicine, manufacturing, and entertainment.

Details

Sensor Review, vol. 24 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 January 2014

Jerzy Golebiowski and Robert Piotr Bycul

– The paper aims to propose a parallel algorithm in order to increase speed and efficiency of an analysis of transient thermal field in layered DC cables.

Abstract

Purpose

The paper aims to propose a parallel algorithm in order to increase speed and efficiency of an analysis of transient thermal field in layered DC cables.

Design/methodology/approach

Initial-boundary problem of thermal field was discretized by means of implicit finite difference method in cylindrical coordinates. A two-stage time decomposition method was applied to introduce parallel computations. An assumed duration of the transient state was decomposed. The system of algebraic equations was being solved with the use of a conjugate gradient method (with diagonal preconditioning) in all time intervals simultaneously.

Findings

A method for solving (with the use of parallel computing system) the transient heat conduction equation in a DC cable consisting of arbitrary number of material layers was given. The dependence of the convective heat transfer coefficient on the location on the perimeter of the cable and on its surface temperature (which introduced non-linearity in the boundary condition) was taken into account. The influence of the determined field on the efficiency of the heat source was also taken into consideration in the model.

Research limitations/implications

The main limitation is induced by cylindrical and coaxial structure of the consecutive layers of the system. Thermal field is generated by direct current flow only. The length of the fragment of the cable under consideration should be much greater than its diameter.

Practical implications

The time-spatial distribution of thermal field in the cross-section of the cable can be used for analysis of its reliability and for determination of important characteristics and parameters of the system.

Originality/value

A parallel algorithm of solving initial-boundary parabolic problem was proposed as a result of synthesis of three methods (finite difference, time decomposition and conjugate gradient). An algorithm of minimization of disturbances of the solution introduced at the division points was given. Equations approximating real distribution of heat transfer coefficient from the surface of the cable were proposed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 December 2002

C.M.A. Ashruf

This article gives an overview on the currently available techniques for the measurement of interface pressure or force between (soft) objects. These techniques make use of single…

5507

Abstract

This article gives an overview on the currently available techniques for the measurement of interface pressure or force between (soft) objects. These techniques make use of single sensor elements as well as integrated arrays of sensors to obtain pressure maps. Most of these devices originate from biomedical applications such as the evaluation of wheelchairs and the prevention of pressure ulcers in hospital beds. Today, these technologies are used in a wide range of applications such as computer peripherals, robotics, automotive systems and consumer electronics. These typical applications are considered in the first section. Next, the sensor technologies (and their suppliers) are briefly described and compared. The list of suppliers and technologies is intended as an overview and may not be complete. Finally, new developments in this field are discussed.

Details

Sensor Review, vol. 22 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Content available
Article
Publication date: 29 June 2010

30

Abstract

Details

Soldering & Surface Mount Technology, vol. 22 no. 3
Type: Research Article
ISSN: 0954-0911

1 – 10 of 34