Search results

1 – 10 of 512
Article
Publication date: 26 September 2018

C.H.H.M. Custers, J.W. Jansen, M.C. van Beurden and E.A. Lomonova

The purpose of this paper is to describe a semi-analytical modeling technique to predict eddy currents in three-dimensional (3D) conducting structures with finite dimensions…

Abstract

Purpose

The purpose of this paper is to describe a semi-analytical modeling technique to predict eddy currents in three-dimensional (3D) conducting structures with finite dimensions. Using the developed method, power losses and parasitic forces that result from eddy current distributions can be computed.

Design/methodology/approach

In conducting regions, the Fourier-based solutions are developed to include a spatially dependent conductivity in the expressions of electromagnetic quantities. To validate the method, it is applied to an electromagnetic configuration and the results are compared to finite element results.

Findings

The method shows good agreement with the finite element method for a large range of frequencies. The convergence of the presented model is analyzed.

Research limitations/implications

Because of the Fourier series basis of the solution, the results depend on the considered number of harmonics. When conducting structures are small with respect to the spatial period, the number of harmonics has to be relatively large.

Practical implications

Because of the general form of the solutions, the technique can be applied to a wide range of electromagnetic configurations to predict, e.g. eddy current losses in magnets or wireless energy transfer systems. By adaptation of the conductivity function in conducting regions, eddy current distributions in structures containing holes or slit patterns can be obtained.

Originality/value

With the presented technique, eddy currents in conducting structures of finite dimensions can be modeled. The semi-analytical model is for a relatively low number of harmonics computationally faster than 3D finite element methods. The method has been validated and shown to be computationally accurate.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 September 2009

P. Enciu, F. Wurtz, L. Gerbaud and B. Delinchant

The purpose of this paper is to illustrate automatic differentiation (AD) as a new technology for the device sizing in electromagnetism by using gradient constrained optimization…

Abstract

Purpose

The purpose of this paper is to illustrate automatic differentiation (AD) as a new technology for the device sizing in electromagnetism by using gradient constrained optimization. Component architecture for the design of engineering systems (CADES) framework, previously described, is presented here with extended features.

Design/methodology/approach

The paper is subject to further usage for optimization of AD (also named algorithmic differentiation) which is a powerful technique that computes derivatives of functions described as computer programs in a programming language like C/C++, FORTRAN.

Findings

Indeed, analytical modeling is well suited regarding optimization procedure, but the modeling of complex devices needs sometimes numerical formulations. This paper then reviews the concepts implemented in CADES which aim to manage the interactions of analytical and numerical modeling inside of gradient‐based optimization procedure. Finally, the paper shows that AD has no limit for the input program complexity, or gradients accuracy, in the context of constrained optimization of an electromagnetic actuator.

Originality/value

AD is employed for a large and complex numerical code computing multidimensional integrals of functions. Thus, the paper intends to prove the AD capabilities in the context of electromagnetic device sizing by means of gradient optimization. The code complexity as also as the implications of AD usage may stand as a good reference for the researchers in this field area.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 September 2012

K.J. Meessen, J.J.H. Paulides and E.A. Lomonova

The purpose of this paper is to present a semi‐analytical modeling technique to describe magnetic fields due to PMs in 3D cylindrical structures. The model is based on 2D Fourier…

Abstract

Purpose

The purpose of this paper is to present a semi‐analytical modeling technique to describe magnetic fields due to PMs in 3D cylindrical structures. The model is based on 2D Fourier series and is applied to model the magnetic field of checkerboard magnetization patterns for rotary‐linear actuators.

Design/methodology/approach

The modeling technique based on Fourier series provides a direct solution of the Poisson and Laplace equation by means of separation of variables and is widely used to describe magnetic fields in electromagnetic devices in 2D coordinate systems. In this paper the magnetic scalar potential is used in the Poisson and Laplace equations.

Findings

The magnetic field calculated by the semi‐analytical model is compared with that obtained by Finite Element Modeling and shows excellent agreement. The calculation time of the semi‐analytical model is approximately 60 times shorter than that of finite element analysis.

Research limitations/implications

The method as presented in the paper assumes linear material properties, e.g. the non‐linear B‐H characteristics of iron cannot be taken into account. Furthermore, the structure is assumed to be slotless, that is, stator slots or end‐effects cannot be taken into account.

Practical implications

The semi‐analytical modeling technique is applied to checkerboard magnetization patterns for 2‐DoF actuators in this paper. However, it can be applied to a wide range of slotless cylindrical electromagnetic devices.

Originality/value

As an addition to the common 2D modeling by means of Fourier series, this paper extends the applicability to 3D cylindrical structures. Furthermore, a new checkerboard magnetization is presented which can be used in 2‐DoF rotary linear actuators.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 19 May 2022

Jiří Malík and Ondřej Souček

This paper aims to propose a semi-analytical benchmarking framework for enthalpy-based methods used in problems involving phase change with latent heat. The benchmark is based on…

Abstract

Purpose

This paper aims to propose a semi-analytical benchmarking framework for enthalpy-based methods used in problems involving phase change with latent heat. The benchmark is based on a class of semi-analytical solutions of spatially symmetric Stefan problems in an arbitrary spatial dimension. Via a public repository this study provides a finite element numerical code based on the FEniCS computational platform, which can be used to test and compare any method of choice with the (semi-)analytical solutions. As a particular demonstration, this paper uses the benchmark to test several standard temperature-based implementations of the enthalpy method and assesses their accuracy and stability with respect to the discretization parameters.

Design/methodology/approach

The class of spatially symmetric semi-analytical self-similar solutions to the Stefan problem is found for an arbitrary spatial dimension, connecting some of the known results in a unified manner, while providing the solutions’ existence and uniqueness. For two chosen standard semi-implicit temperature-based enthalpy methods, the numerical error assessment of the implementations is carried out in the finite element formulation of the problem. This paper compares the numerical approximations to the semi-analytical solutions and analyzes the influence of discretization parameters, as well as their interdependence. This study also compares accuracy of these methods with other traditional approach based on time-explicit treatment of the effective heat capacity with and without iterative correction.

Findings

This study shows that the quantitative comparison between the semi-analytical and numerical solutions of the symmetric Stefan problems can serve as a robust tool for identifying the optimal values of discretization parameters, both in terms of accuracy and stability. Moreover, this study concludes that, from the performance point of view, both of the semi-implicit implementations studied are equivalent, for optimal choice of discretization parameters, they outperform the effective heat capacity method with iterative correction in terms of accuracy, but, by contrast, they lose stability for subcritical thickness of the mushy region.

Practical implications

The proposed benchmark provides a versatile, accessible test bed for computational methods approximating multidimensional phase change problems. The supplemented numerical code can be directly used to test any method of choice against the semi-analytical solutions.

Originality/value

While the solutions of the symmetric Stefan problems for individual spatial dimensions can be found scattered across the literature, the unifying perspective on their derivation presented here has, to the best of the authors’ knowledge, been missing. The unified formulation in a general dimension can be used for the systematic construction of well-posed, reliable and genuinely multidimensional benchmark experiments.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 February 2022

Basharat Ullah, Faisal Khan and Muhammad Qasim

This paper aims to develop an analytical approach to validate the finite element analysis (FEA) results. FEA itself is a powerful tool to evaluate the performance of electrical…

Abstract

Purpose

This paper aims to develop an analytical approach to validate the finite element analysis (FEA) results. FEA itself is a powerful tool to evaluate the performance of electrical machines but takes more time and requires more drive storage. To overcome this issue, subdomain modeling (SDM) is used for the proposed machine.

Design/methodology/approach

SDM is developed to validate the electromagnetic performance of a new linear hybrid excited flux switching machine (LHEFSM) with ferrite magnets. In SDM, the problem is divided into different physical regions called subdomains. Maxwell's governing equation is solved analytically for each region, where the magnetic flux density (MFD) is generated. From the generated MFD, x and y components are calculated, which are then used to find the useful force along the x-axis.

Findings

FEA validates the developed SDM via JMAG v. 20.1. The results obtained show excellent agreement with an accuracy of 95.13%.

Practical implications

The proposed LHEFSM is developed for long stroke applications like electric trains.

Originality/value

The proposed LHEFSM uses low-cost ferrite magnets with DC excitation, which offers better flux regulation capability with improved electromagnetic performance. Moreover, the developed SDM reduces drive storage and computational time by modeling different parts of the machine.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 April 2007

H. Chetouani, B. Delinchant and G. Reyne

This paper aims to present a modeling approach of diamagnetic microsystems for design and optimization requirements. It is demonstrated on the stabilisation optimization of a…

Abstract

Purpose

This paper aims to present a modeling approach of diamagnetic microsystems for design and optimization requirements. It is demonstrated on the stabilisation optimization of a diamagnetic levitation system for biomedical applications.

Design/methodology/approach

Surface approach was used to compute analytically the magnetic field induction. This modeling is depending on system to design (approximation, equation simplifications due to specific geometries) coupled with a design framework which is based on symbolic equation derivation and SQP constrained optimization algorithm.

Findings

Optimally stabilized magnetic levitating systems, for a pyrolitic graphite micro plate and for a latex bead.

Research limitations/implications

The analytical or semi‐analytical modeling of magnetic field induction and forces produced by complex geometries is sometimes either hard to establish or not adequate to perform a fast optimization, due to heavy numerical parts implemented into the device modeling.

Practical implications

Implications are of two kinds. First are results of the magnetic levitating system which can improve lab on a chip for biomedical applications. Second is design framework improvement with diamagnetic modeling capabilities.

Originality/value

Stability optimization of diamagnetic levitation system, based on an original approach of modeling and sizing with dedicated tools.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 18 November 2020

Ali Jabbari and Frédéric Dubas

In semi-analytical modeling of spoke-type permanent-magnet (PM) machines (STPMM), the saturation effect is usually neglected (i.e. iron parts are considered to be infinitely…

Abstract

Purpose

In semi-analytical modeling of spoke-type permanent-magnet (PM) machines (STPMM), the saturation effect is usually neglected (i.e. iron parts are considered to be infinitely permeable) and the PM magnetization is assumed tangential (i.e. magnetization pattern is considered to be tangential-parallel). This paper aims to present an improved two-dimensional (2D) subdomain technique for STPMM with the PM magnetization orientation in quasi-Cartesian coordinates by using hyperbolic functions considering non-homogeneous Neumann boundary conditions (BCs) in non-periodic regions and by applying the interfaces conditions (ICs) in both directions (i.e. t- and θ edges ICs).

Design/methodology/approach

The polar coordinate system is transformed into a quasi-Cartesian coordinate system. The rotor and stator regions are divided into primary subdomains, and a partial differential equation (PDE) is assigned to each subdomain. In the PM region, the magnetization orientation is considered in the equations. By applying BCs, the general solution of the equations is determined, and by applying the ICs, the corresponding coefficients are determined.

Findings

Using the proposed coordinate system, the general solution of PDEs and their coefficients can mathematically be simplified. The magnetic field and non-intrinsic unbalanced magnetic forces (UMF) calculations have been performed for three different values of iron core relative permeability (200, 800 and ∞), as well as different magnetization orientation values (135 and 80 degrees). The semi-analytical model based on the subdomain technique is compared with those obtained by the 2D finite-element analysis (FEA). Results disclose that the PM magnetization angle can affect directly the performance characteristics of the STPMM.

Originality/value

A new model for prediction of electromagnetic performances in the STPMM takes into account magnetization direction, and soft magnetic material relative permeability in a pseudo-Cartesian coordinate system by using subdomain technique is presented.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 November 2018

Lazhar Roubache, Kamel Boughrara, Frédéric Dubas and Rachid Ibtiouen

The most significant point to be introduced in the subdomain technique (i.e. based on the formal resolution of Maxwell’s equations applied in subdomain) is the local saturation…

Abstract

Purpose

The most significant point to be introduced in the subdomain technique (i.e. based on the formal resolution of Maxwell’s equations applied in subdomain) is the local saturation effect. This paper aims to present a novel contribution on the improvement in the two-dimensional (2-D) technique in polar coordinates by focusing on the local saturation.

Design/methodology/approach

The rotor and stator regions are divided into elementary subdomains (E-SDs) which are characterized by general solutions to the first harmonic of magnetostatic Maxwell equations. These E-SDs are connected in the two directions (i.e. r- and θ-edges). Newton–Raphson (NR) iterative algorithm is used for nonlinear magnetic field analysis.

Findings

The proposed model is relevant for different types of rotating electrical machines; as an example, the semi-analytical model has been implemented for spoke-type permanent-magnet (PM) machines (STPMMs). The magnetic field calculations have been performed for nonlinear B(H) curve and compared to nonlinear finite element method (FEM) predictions. The semi-analytic results are in good agreement with those obtained numerically, considering both amplitude and waveform.

Originality/value

A new model for full prediction of magnetic field in the rotating electrical machines with the local saturation effect is presented.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 January 2016

Corentin Dumont de Chassart, Maxence Van Beneden, Virginie Kluyskens and Bruno Dehez

Optimizing an electromechanical device often requires a significant number of evaluations of the winding inductance. In order to reduce drastically the computing costs associated…

Abstract

Purpose

Optimizing an electromechanical device often requires a significant number of evaluations of the winding inductance. In order to reduce drastically the computing costs associated with the calculation of inductances, the purpose of this paper is to propose a semi-analytical toolbox to calculate inductances in any winding made of axial and azimuthal wires and lying in the air.

Design/methodology/approach

First, this paper presents a typical rectangular, spiral winding and the way its geometry is approximated for inductance calculations. Second, the basic formulas to calculate inductances of various windings arrangements are provided. The analytical model of the inductances is exposed, and the formulas for the inductances are derived. Finally, a validation is proposed by comparing analytical predictions to 3D FE simulations results and experimental measurements.

Findings

The semi-analytical predictions agree with the finite element methods (FEM) and experimental data. Furthermore, the calculation of the inductances was done using much fewer resources with the semi-analytical model than with FEM.

Research limitations/implications

The analytical formula for the mutual inductance between coaxial circular arcs is a series with an infinite number of terms which should be truncated appropriately. This is necessary because the term are found using a recurrence formula which may be unstable for a high number of terms.

Practical implications

The paper includes implications for the optimization of electromechanical devices comprising windings made of axial and azimuthal pieces of wires.

Originality/value

The main original result resides in the analytical expression of Neumann’s integral for the inductance between two coaxial circular arcs.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 April 2024

Zhen Li, Jianqing Han, Mingrui Zhao, Yongbo Zhang, Yanzhe Wang, Cong Zhang and Lin Chang

This study aims to design and validate a theoretical model for capacitive imaging (CI) sensors that incorporates the interelectrode shielding and surrounding shielding electrodes…

Abstract

Purpose

This study aims to design and validate a theoretical model for capacitive imaging (CI) sensors that incorporates the interelectrode shielding and surrounding shielding electrodes. Through experimental verification, the effectiveness of the theoretical model in evaluating CI sensors equipped with shielding electrodes has been demonstrated.

Design/methodology/approach

The study begins by incorporating the interelectrode shielding and surrounding shielding electrodes of CI sensors into the theoretical model. A method for deriving the semianalytical model is proposed, using the renormalization group method and physical model. Based on random geometric parameters of CI sensors, capacitance values are calculated using both simulation models and theoretical models. Three different types of CI sensors with varying geometric parameters are designed and manufactured for experimental testing.

Findings

The study’s results indicate that the errors of the semianalytical model for the CI sensor are predominantly below 5%, with all errors falling below 10%. This suggests that the semianalytical model, derived using the renormalization group method, effectively evaluates CI sensors equipped with shielding electrodes. The experimental results demonstrate the efficacy of the theoretical model in accurately predicting the capacitance values of the CI sensors.

Originality/value

The theoretical model of CI sensors is described by incorporating the interelectrode shielding and surrounding shielding electrodes into the model. This comprehensive approach allows for a more accurate evaluation of the detecting capability of CI sensors, as well as optimization of their performance.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 512