Search results

1 – 10 of 73
Article
Publication date: 10 July 2018

Junwei Wu, Xiao Wang, Luhai Zhou, Xicheng Wei and Wurong Wang

Serpentine is usually added into the lubricant oil to form a self-repairing protective layer on worn ferrous surface. But few works have paid close attention to the preparation of…

Abstract

Purpose

Serpentine is usually added into the lubricant oil to form a self-repairing protective layer on worn ferrous surface. But few works have paid close attention to the preparation of composites with the addition of serpentine. In this work, serpentine reinforced Al matrix composites were successfully prepared to be industrial lubrication components. And its fabricating parameters, compressive strength and tribological properties were analyzed.

Design/methodology/approach

An MM-W1 three-pin-on-disk apparatus was used to investigate the tribological properties. The worn surface, microstructure and cross-sectional morphologies were characterized by scanning electron microscopy equipped with energy dispersive spectroscopy. The compression test was carried out on a universal testing machine. An X-ray diffractometer was used to investigate the phase constitutions. The decomposition temperature of serpentine powders was investigated by a thermal analyzer, which allows simultaneous differential scanning calorimetry and thermogravimetry. With the help of finite element method model, a diagrammatic model of the self-repairing surface layer was developed to analyze the anti-friction mechanism.

Findings

Through evaluating density and Brinell hardness, sintering at 560°C for 3 h are the appropriate parameters for fabricating the composites. Compressive strength was increased by the addition of serpentine. A self-repairing surface layer was formed, reducing the friction coefficient. And a diagrammatic model of the self-repairing surface layer was developed to analyze the anti-friction mechanism.

Originality/value

Serpentine was added in fabricating the Al matrix composites for the first time. Sintering parameters were optimized to make better Al/Si/serpentine composites. Compressive strength was increased by the addition of serpentine. A self-repairing surface layer was formed, reducing the friction coefficient under the dry sliding condition. And a diagrammatic model of the self-repairing surface layer was developed to analyze the anti-friction mechanism. It is hoped to be helpful in further confirming the factors for the formation of the self-repairing surface layer, and in designing a new industrial anti-friction composite used for dry sliding conditions.

Details

Industrial Lubrication and Tribology, vol. 70 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 February 2012

Zhang Yidong

The purpose of this paper is to prove the self‐repairing Cu film of Cu‐DDP additive in base lubricating oil.

Abstract

Purpose

The purpose of this paper is to prove the self‐repairing Cu film of Cu‐DDP additive in base lubricating oil.

Design/methodology/approach

Cu nanoparticles coated with dialkydithiophosphate (Coded as Cu‐DDP) were synthesized in situ by redox method. The size and structure of Cu‐DDP were characterized using transmission electronic microscopy (TEM) and electronic diffraction (ED) analysis. The self‐repairing performance of Cu‐DDP as additive in base lubricating oil was evaluated by MRH‐3 stock‐on‐ring testing machine. Scanning electronic microscopy (SEM), UMT‐2 tribometer, X‐ray photoelectron spectroscopy (XPS), and energy‐dispersive spectrum (EDS) were used to study the self‐repairing Cu film on the stock.

Findings

The test results showed that the modified Cu‐DDP additive in base lubricating oil exhibited excellent anti‐wear and friction‐reducing properties, as well as good self‐repairing performance.

Research limitations/implications

The thickness of the self‐repairing Cu film was unknown, and the relationship between thickness of the Cu film and load, time, rotation velocity was still necessary to investigate.

Practical implications

The Cu‐DDP additive was involved P and S elements, therefore, it is still promising to seek environment friendly additive without P and S elements.

Originality/value

For the first time, MRH‐3 stock‐on‐ring testing machine, Scanning electronic microscopy (SEM), UMT‐2 tribometer, X‐ray photoelectron spectroscopy (XPS), and energy‐dispersive spectrum (EDS) were widely used to study the self‐repairing Cu film on the stock.

Details

Industrial Lubrication and Tribology, vol. 64 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 September 2023

Donghui Hu, Shenyou Song, Zongxing Zhang and Linfeng Wang

This paper aims to figure out the conundrum that the corrosion resistance longevity of steel wires for bridge cables was arduous to meet the requirements.

Abstract

Purpose

This paper aims to figure out the conundrum that the corrosion resistance longevity of steel wires for bridge cables was arduous to meet the requirements.

Design/methodology/approach

The “two-step” hot-dip coating process for cable steel wires was developed, which involved first hot-dip galvanizing and then hot-dip galvanizing of aluminum magnesium alloy. The corrosion rate, polarization curve and impedance of Zn–6Al–1Mg and Zn–10Al–3Mg alloy-coated steel wires were compared through acetate spray test and electrochemical test, and the corrosion mechanism of Zn–Al–Mg alloy-coated steel wires was revealed.

Findings

The corrosion resistance of Zn–10Al–3Mg alloy-coated steel wires had the best corrosion resistance, which was more than seven times that of pure zinc-coated steel wires. The corrosion current of Zn–10Al–3Mg alloy-coated steel wires was lower than that of Zn–6Al–1Mg alloy-coated steel wires, whereas the capacitive arc and impedance value of the former were higher than that of the latter, making it clear that the corrosion resistance of Zn–10Al–3Mg was better than that of Zn–6Al–1Mg alloy coating. Moreover, the Zn–Al–Mg alloy-coated steel wires for bridge cables had the function of coating “self-repairing.”

Originality/value

Controlling the temperature and time of the hot dip galvanizing stage can reduce the thickness of transition layer and solve the problem of easy cracking of the transition layer in the Zn–Al–Mg alloy coating due to the Sandelin effect.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 14 December 2023

Yajun Chen, Zehuan Sui and Juan Du

This paper aims to focus on the research progress of intelligent self-healing anti-corrosion coatings in the aviation field in the past few years. The paper provides certain…

Abstract

Purpose

This paper aims to focus on the research progress of intelligent self-healing anti-corrosion coatings in the aviation field in the past few years. The paper provides certain literature review supports and development direction suggestions for future research on intelligent self-healing coatings in aviation.

Design/methodology/approach

This mini-review uses a systematic literature review process to provide a comprehensive and up-to-date review of intelligent self-healing anti-corrosion coatings that have been researched and applied in the field of aviation in recent years. In total, 64 articles published in journals in this field in the last few years were analysed in this paper.

Findings

The authors conclude that the incorporation of multiple external stimulus-response mechanisms makes the coatings smarter in addition to their original self-healing corrosion protection function. In the future, further research is still needed in the research and development of new coating materials, the synergistic release of multiple self-healing mechanisms, coating preparation technology and corrosion monitoring technology.

Originality/value

To the best of the authors’ knowledge, this is one of the few systematic literature reviews on intelligent self-healing anti-corrosion coatings in aviation. The authors provide a comprehensive overview of the topical issues of such coatings and present their views and opinions by discussing the opportunities and challenges that self-healing coatings will face in future development.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 8 March 2011

Yun‐hui Mo and De‐hua Tao

The purpose of the paper is to study a new type of lubrication additive with Nano‐Tin, and to analyze the tribological performance of the friction coatings that are formed by the…

Abstract

Purpose

The purpose of the paper is to study a new type of lubrication additive with Nano‐Tin, and to analyze the tribological performance of the friction coatings that are formed by the lubricants.

Design/methodology/approach

The Tin‐base additives were prepared and activated, friction testing was performed on an improved type MS‐800 four‐ball tester, and the nanometer additives with different contents of Tin were used as lubricants in steel‐copper tribo‐pair. The surface elements of friction coatings were investigated with Auger electron spectrum, and the thickness and element distribution of the coating were measured with scanning electron microscope.

Findings

The ultra‐thick friction coating (10‐20 μm) with abundant Tin was carried out and combined well with the surface of the copper sample when lubricated with oil containing this additive. The coating exhibited excellent anti‐wear and friction‐reducing capacities.

Research limitations/implications

The anticorrosion properties have not been estimated.

Practical implications

A useful Nano‐Tin base lubricating oil additive is prepared and the activate method is explored. It may provide the potential lubricating oil additive for steel‐copper tribo‐pair, such as steel worm‐copper worm wheel transmission.

Originality/value

This paper provides a Nano‐Tin base‐activated additive which, when used in lubricating oil, can form an ultra‐thick friction coating. It has the same self‐repairing properties as a steel‐copper tribo‐pair.

Details

Industrial Lubrication and Tribology, vol. 63 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 January 2024

Zhengwei Song, Zhi-Hui Xie, Lifeng Ding and Shengjian Zhang

This paper aims to comprehensively review the preparation methods of superhydrophobic surfaces (SHPS) for corrosion protection of Mg alloy in recent years.

Abstract

Purpose

This paper aims to comprehensively review the preparation methods of superhydrophobic surfaces (SHPS) for corrosion protection of Mg alloy in recent years.

Design/methodology/approach

The preparation methods, wettability and corrosion resistance of SHPS on Mg alloy in the past three years are systematically described in this paper.

Findings

Two types of SHPS, including single-layer and multilayer coatings for corrosion protection of Mg alloy are summarized. Preparing multilayered coatings with multifunction is the current trend in developing SHPS on Mg alloy.

Originality/value

This paper reviewed the preparation methods and corrosion resistance of SHPS on Mg alloys. It provides a valuable reference for researchers to develop highly durable SHPS with excellent corrosion resistance for Mg alloys.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 March 2013

G.C. Kordas, A.C. Balaskas, I.A. Kartsonakis and E.K. Efthimiadou

The purpose of this paper is to study the release of corrosion inhibitor from nanocontainers and to show that it can be released due to reaction with the substrate induced by…

Abstract

Purpose

The purpose of this paper is to study the release of corrosion inhibitor from nanocontainers and to show that it can be released due to reaction with the substrate induced by corrosion. This is called self‐healing of corrosion. Raman spectroscopy was used to show that reaction after scratching of the surface and corrosion of the substrate.

Design/methodology/approach

TiO2 nanocontainers loaded with 8‐hydroxyquinoline (8‐HQ) were placed onto a copper substrate and wetted with in 0.05 M NaCl solution. The Raman spectrum of the modified copper surface was attributed to the Cu(8‐Q)2 compound. The incorporation of loaded nanocontainers into epoxy coatings showed enhanced protection against corrosion. Artificial defects were formed on the coatings in order to evaluate the corrosion process and the possible self‐healing effect. The Raman spectra in the scratch tentatively assigned to Cu(8‐Q)2 compound. This result shows that the enhanced anti‐corrosive properties of the films with loaded nanocontainers can be attributed to the released inhibitor from the nanocontainer.

Findings

The authors found that the corrosion of copper substrate induces the release of hydroxyquinoline and formation of a chelate. This is the self‐healing phenomenon.

Practical implications

This can be employed for self‐healing in all structures, such as mechanical properties of bridges, etc.

Social implications

Damage occurs in all structures: the cost is immense – millions of dollars. Damage also occurs after an earthquake, accidents, etc. Self‐repairing is the key issue in modern science, therefore this article is of great importance.

Originality/value

The originality is that the authors showed, with Raman spectroscopy, that the chemicals in the nanocontainers in the coatings are released by the corrosion induced in the metal. This is the first spectroscopic proof of self‐healing.

Details

International Journal of Structural Integrity, vol. 4 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 22 March 2011

Yogesha Subbaiah, Venkatakrishna Kaje and Ampar Chitharanjan Hegde

The purpose of this paper is to develop and optimize anti‐corrosive multi‐layered coatings of zinc‐nickel alloy on carbon steel.

Abstract

Purpose

The purpose of this paper is to develop and optimize anti‐corrosive multi‐layered coatings of zinc‐nickel alloy on carbon steel.

Design/methodology/approach

A variety of composition‐modulated multi‐layer alloy (CMMA) coatings of zinc‐nickel were developed on a carbon steel substrate by cyclic changes in cathode current during electrodeposition, coupled with variation of the thicknesses of the individual layers. The corrosion behavior of the coatings was studied in 5 percent NaCl solution by electrochemical methods. Cyclic cathode current densities (CCCDs) and the number of alloy layers were optimized for highest performance of the coatings against corrosion. The factors responsible for improved corrosion resistance were analyzed in terms of change in the intrinsic electrical properties of the capacitance value at the electrical double layer that was associated with micro/nanometric layering. The formation of the semi‐conductive surface film, which was responsible for the improved corrosion resistance, was supported by a Mott‐Schottky plot and the cyclic polarization study. The formation of multi‐layered deposit and the mechanism of corrosion degradation of the coating were analyzed using scanning electron microscopy.

Findings

CMMA coatings with an optimal configuration of (Zn‐Ni)2.0/4.0/300 showed ∼35 times better corrosion resistance compared to a monolithic (Zn‐Ni)3.0 alloy coating of the same thickness. The peak performance was attributed to the change in intrinsic electrical properties of the coating and this conclusion was supported by dielectric spectroscopy.

Originality/value

The paper describes the optimization of CCCD and the number of deposited layers by development of electrolytic deposition of anti‐corrosive multi‐layered zinc‐nickel coatings from a single plating technique.

Details

Anti-Corrosion Methods and Materials, vol. 58 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 25 September 2009

Ming Zhang, Xiaobo Wang, Weimin Liu and Xisheng Fu

The purpose of this paper is to study the tribological performance and anti‐wear mechanism of Cu nanoparticles as lubricating oil additives.

1153

Abstract

Purpose

The purpose of this paper is to study the tribological performance and anti‐wear mechanism of Cu nanoparticles as lubricating oil additives.

Design/methodology/approach

An end‐face wear testing apparatus is used to measure the tribological properties of Cu nanoparticles as lubricating oil additives and using a commercial SJ 15W/40 gasoline engine oil for comparison. Electrical contact resistance (ECR) is measured on a universal nano and micro tester‐2 tribometer to detect the formation of tribo‐film generated by Cu nanoparticulate additive. The worn steel surfaces are investigated by scanning electron microscope (SEM), energy dispersive spectra (EDS) and X‐ray photoelectron spectroscopy (XPS).

Findings

The results show that Cu nanoparticles used as an oil additive can improve the anti‐wear and friction‐reduction performance of SJ 15W/40 gasoline engine oil remarkably. The results of SEM, EDS and XPS show that a deposit film containing metallic copper can form on the worn surface, which has a film thickness of about 120 nm.

Originality/value

This investigation establishes a baseline of Cu nanoparticles used as lubricating oil additives under face‐to‐face contact work conditions. Thus, the results are reliable and can be very useful for further applications of Cu nanoparticle additives in industry.

Details

Industrial Lubrication and Tribology, vol. 61 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 January 2022

Xiuheng Zhang, Ningning Hu, Tianchi Chen and Songquan Wang

This study aims to prevent the sharp decline in the load-carrying capacity of lubricating oil film under harsh conditions of abrupt changes in friction interface temperature…

Abstract

Purpose

This study aims to prevent the sharp decline in the load-carrying capacity of lubricating oil film under harsh conditions of abrupt changes in friction interface temperature, which is a major challenge in lubrication technology.

Design/methodology/approach

In this paper, we synthesized a series of silver pyrazole methylpyridine complexes containing a high metal concentration and minimal supporting organic ligands (complex 1 [Ag(LMe)]2(BF4)2, complex 2 [Ag(Li-Pr)n](BF4)n and complex 3 [Ag(LMe)(NO3)]2). The thermal decompose behavior of as-prepared silver complex was investigated by thermogravimetric analysis and X-ray photoelectron spectrometry (XPS). Four-ball friction testers were used to evaluate the friction and wear properties of lubricating oil in the temperature ranges associated with the operation of modern heavy machinery.

Findings

The complex decomposed silver particles at high-temperature, which could fill the pits on the friction surface, change the wear form of the friction pair and reduce the roughness of the friction surface. Reduction in both friction coefficients and wear scar diameters was obtained by adding silver complexes in oil. The lubricating oil, with the additive content of 1.5 Wt.%, has the best tribological performance, moreover, the lubricating performance of the silver complexes in oil were correlated with their concentration and thermal decomposed temperatures, respectively.

Originality/value

As a result, a series of silver pyrazole methylpyridine complexes as oil additives can support friction and wear reduction under abrupt high-temperature conditions are intended to be a controllable backup lubricant additive.

Details

Industrial Lubrication and Tribology, vol. 74 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 73