Search results

1 – 10 of 95
Article
Publication date: 9 January 2024

Linghuan Li, Shibin Sun, Ronghua Zhuang, Bing Zhang, Zeyu Li and Jianying Yu

This study aims to develop a polymer cement-based waterproof coating with self-healing capability to efficiently and intelligently solve the building leakage caused by cracking of…

Abstract

Purpose

This study aims to develop a polymer cement-based waterproof coating with self-healing capability to efficiently and intelligently solve the building leakage caused by cracking of waterproof materials, along with excellent durability to prolong its service life.

Design/methodology/approach

Ion chelators are introduced into the composite system based on ethylene vinyl acetate copolymer emulsion and ordinary Portland cement to prepare self-healing polymer cement-based waterproof coating. Hydration, microstructure, wettability, mechanical properties, durability, self-healing performance and self-healing products of polymer cement-based waterproof coating with ion chelator are investigated systematically. Meanwhile, the chemical composition of self-healing products in the crack was examined.

Findings

The results showed that ion chelators could motivate the hydration of C2S and C3S, as well as the formation of hydration products (C-S-H gel) of the waterproof coating to improve its compactness. Compared with the control group, the waterproof coating with ion chelator had more excellent water resistance, alkali resistance, thermal and UV aging resistance. When the dosage of ion chelator was 2%, after 28 days of curing, cracks with a width of 0.29 mm in waterproof coating could fully heal and cracks with a width of 0.50 mm could achieve a self-healing efficiency of 72%. Furthermore, the results reveal that the self-healing product in the crack was calcite crystalline CaCO3.

Originality/value

A novel ion chelator was introduced into the composite coating system to endow it with excellent self-healing ability to prolong its service life. It has huge application potential in the field of building waterproofing.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 14 December 2023

Yajun Chen, Zehuan Sui and Juan Du

This paper aims to focus on the research progress of intelligent self-healing anti-corrosion coatings in the aviation field in the past few years. The paper provides certain…

Abstract

Purpose

This paper aims to focus on the research progress of intelligent self-healing anti-corrosion coatings in the aviation field in the past few years. The paper provides certain literature review supports and development direction suggestions for future research on intelligent self-healing coatings in aviation.

Design/methodology/approach

This mini-review uses a systematic literature review process to provide a comprehensive and up-to-date review of intelligent self-healing anti-corrosion coatings that have been researched and applied in the field of aviation in recent years. In total, 64 articles published in journals in this field in the last few years were analysed in this paper.

Findings

The authors conclude that the incorporation of multiple external stimulus-response mechanisms makes the coatings smarter in addition to their original self-healing corrosion protection function. In the future, further research is still needed in the research and development of new coating materials, the synergistic release of multiple self-healing mechanisms, coating preparation technology and corrosion monitoring technology.

Originality/value

To the best of the authors’ knowledge, this is one of the few systematic literature reviews on intelligent self-healing anti-corrosion coatings in aviation. The authors provide a comprehensive overview of the topical issues of such coatings and present their views and opinions by discussing the opportunities and challenges that self-healing coatings will face in future development.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 19 September 2023

Hong-Feng Li, Jun Sun, Xiao-Yong Wang, Lei-Lei Xing and Guang-Zhu Zhang

The purpose of this paper is to add expanded perlite (EP) immobilized microorganisms that replace part of the standard sand in mortar to improve the self-healing ability of mortar…

Abstract

Purpose

The purpose of this paper is to add expanded perlite (EP) immobilized microorganisms that replace part of the standard sand in mortar to improve the self-healing ability of mortar cracks and reduce the water absorption of mortar after healing.

Design/methodology/approach

Bacillus pseudofirmus spores were immobilized with EP particles as self-healing agents. The effects of adding self-healing agents on the compressive strength of mortar specimens were observed. The ability of mortar specimens to heal cracks was evaluated using crack microscopic observation and water absorption experiments. The filler at the cracks was microscopically analyzed by scanning electron microscope and X-ray diffraction experiments.

Findings

First, the internal curing effect of EP promotes the hydration of cement in mortar, which generates more amount and denser crystal structure of Ca(OH)2 at mortar cracks and improves the self-healing ability of mortar. Second, the self-healing ability of mortar improves with the increase of self-healing agent admixture. Adding a self-healing agent of high admixture makes the planar undulation of calcite crystal accumulation at mortar cracks more significant. Finally, the initial crack widths that can be completely healed by adding EP and self-healing agents to the mortar are 200 µm and 600 µm, respectively.

Originality/value

The innovation points of this study are as follows. (1) The mechanism of the internal curing effect of EP particles on the self-healing ability of mortar cracks was revealed by crack microscopic observation tests and microscopic experiments. (2) The effect of different self-healing agent amounts on the self-healing ability of mortar cracks has been studied. (3) The effects of EP particles and self-healing agents on healing different initial widths were elucidated by crack microscopic observation tests.

Graphical abstract

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 28 July 2023

Anagi Balachandra, Roz-Ud-Din Nassar and Parviz Soroushian

This study aims to report the development and experimental evaluation of three innovative corrosion-resistant modified epoxy coatings, namely, nanocomposite/toughened…

Abstract

Purpose

This study aims to report the development and experimental evaluation of three innovative corrosion-resistant modified epoxy coatings, namely, nanocomposite/toughened, self-healing and hybrid epoxy coatings, for application on steel substrates.

Design/methodology/approach

The corrosion resistance of these coatings was evaluated in a highly corrosive environment of salt fog spray for 2,500 h of exposure. Electrochemical impedance spectroscopy (EIS) measurements in sustained exposure to NaCl in a saturated Ca(OH)2 solution, rust creepage measurements at the location of scribe formed in the coatings and adhesion strength test were used to assess the performance of the innovative coatings. Commercially available marine-grade protective epoxy coatings were used as the reference coatings.

Findings

The test results showed that the modified epoxy coatings exhibited excellent corrosion resistance when exposed to an aggressive environment for extended periods. The EIS measurements, rust creepage measurements, pull-off strength and visual appearance of the aged modified–epoxy–coated specimens confirmed the enhanced corrosion resistance of the modified epoxy coatings.

Originality/value

Among the three types of modified coatings, the hybrid epoxy coating stands out to be the best performer.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 June 2023

Hua Huang, Yaqiong Fan, Huiyang Huang and Runlan Guo

As an efficient self-healing intelligent material, the encapsulation-based self-healing resin mineral composite (SHC) has a broad application prospect.

Abstract

Purpose

As an efficient self-healing intelligent material, the encapsulation-based self-healing resin mineral composite (SHC) has a broad application prospect.

Design/methodology/approach

Aiming at the cracking performance of SHC, the dynamic load condition is employed to replace the traditional static load condition, the initial damage of the material is considered and the triggered cracking process and influencing factors of SHC are analyzed based on the extended finite element method (XFEM). In addition, the mechanism of matrix cracking and microcapsule triggered cracking process is explained from the microscopic point of view, and the cracking performance conditions of SHC are studied. On this basis, the response surface regression analysis method is used to obtain a second-order polynomial model of the microcapsule crack initiation stress, the interface bonding strength and the matching relationship between elastic modulus. Therefore, the model could be used to predict the cracking performance parameters of the microcapsule.

Findings

The interfacial bonding strength has an essential effect on the triggered cracking of the microcapsule. In order to ensure that the microcapsule can be triggered cracking normally, the design strength should meet the following relationship, that is crack initiation stress of microcapsule wall < crack initiation stress of matrix < interface bonding strength. Moreover, the matching relationship between elastic modulus has a significant influence on the triggered cracking of the microcapsule.

Originality/value

The results provide a theoretical basis for further oriented designing of the cracking performance of microcapsules.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 8 March 2022

Ibrahim Mashal

Smart grid is an integration between traditional electricity grid and communication systems and networks. Providing reliable services and functions is a critical challenge for the…

Abstract

Purpose

Smart grid is an integration between traditional electricity grid and communication systems and networks. Providing reliable services and functions is a critical challenge for the success and diffusion of smart grids that needs to be addressed. The purpose of this study is to determine the critical criteria that affect smart grid reliability from the perspective of users and investigate the role big data plays in smart grid reliability.

Design/methodology/approach

This study presents a model to investigate and identify criteria that influence smart grid reliability from the perspective of users. The model consists of 12 sub-criteria covering big data management, communication system and system characteristics aspects. Multi-criteria decision-making approach is applied to analyze data and prioritize the criteria using the fuzzy analytic hierarchy process based on the triangular fuzzy numbers. Data was collected from 16 experts in the fields of smart grid and Internet of things.

Findings

The results show that the “Big Data Management” criterion has a significant impact on smart grid reliability followed by the “System Characteristics” criterion. The “Data Analytics” and the “Data Visualization” were ranked as the most influential sub-criteria on smart grid reliability. Moreover, sensitivity analysis has been applied to investigate the stability and robustness of results. The findings of this paper provide useful implications for academicians, engineers, policymakers and many other smart grid stakeholders.

Originality/value

The users are not expected to actively participate in smart grid and its services without understanding their perceptions on smart grid reliability. Very few works have studied smart grid reliability from the perspective of users. This study attempts to fill this considerable gap in literature by proposing a fuzzy model to prioritize smart grid reliability criteria.

Article
Publication date: 19 January 2024

Zhengwei Song, Zhi-Hui Xie, Lifeng Ding and Shengjian Zhang

This paper aims to comprehensively review the preparation methods of superhydrophobic surfaces (SHPS) for corrosion protection of Mg alloy in recent years.

Abstract

Purpose

This paper aims to comprehensively review the preparation methods of superhydrophobic surfaces (SHPS) for corrosion protection of Mg alloy in recent years.

Design/methodology/approach

The preparation methods, wettability and corrosion resistance of SHPS on Mg alloy in the past three years are systematically described in this paper.

Findings

Two types of SHPS, including single-layer and multilayer coatings for corrosion protection of Mg alloy are summarized. Preparing multilayered coatings with multifunction is the current trend in developing SHPS on Mg alloy.

Originality/value

This paper reviewed the preparation methods and corrosion resistance of SHPS on Mg alloys. It provides a valuable reference for researchers to develop highly durable SHPS with excellent corrosion resistance for Mg alloys.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 26 May 2022

Chandra Pal and Ravi Shankar

The purpose of this study is to establish a hierarchy of critical success factors to develop a framework for evaluating the performance of smart grids from a sustainability…

Abstract

Purpose

The purpose of this study is to establish a hierarchy of critical success factors to develop a framework for evaluating the performance of smart grids from a sustainability perspective.

Design/methodology/approach

The fuzzy analytical hierarchy process is used in this study to assess and determine the relative weight of economic, operational and environmental criteria. At the same time, the evidential reasoning algorithm is used to determine the belief degree of expert’s opinion, and the expected utility theory for the crisp value of success factors in performance estimation.

Findings

The finding reveals that success factors associated with the economic criteria receive significantly more attention from the expert group. Sensitivity analysis indicates the ranking of consumer satisfaction remains stable no matter how criteria weights are changed, which verifies the robustness and effectiveness of the proposed model and evaluation results.

Originality/value

The study presents a solid mathematical framework for collaborative system modeling and systematic analysis. Managers and stakeholders may use the proposed technique as a flexible tool to improve the energy system’s resiliency in a systematic way.

Article
Publication date: 25 September 2023

Jiaxin Li, Zhiyuan Zhu, Zhiwei Li, Yonggang Zhao, Yun Lei, Xuping Su, Changjun Wu and Haoping Peng

Gallic acid is a substance that is widely found in nature. Initially, it was only used as a corrosion inhibitor to retard the rate of corrosion of metals. In recent years, with…

Abstract

Purpose

Gallic acid is a substance that is widely found in nature. Initially, it was only used as a corrosion inhibitor to retard the rate of corrosion of metals. In recent years, with intensive research by scholars, the modification of coatings containing gallic acid has become a hot topic in the field of metal protection. This study aims to summarize the various preparation methods of gallic acid and its research progress in corrosion inhibitors and coatings, as well as related studies using quantum chemical methods to assess the predicted corrosion inhibition effects and to systematically describe the prospects and current status of gallic acid applications in the field of metal corrosion inhibition and protection.

Design/methodology/approach

First, the various methods of preparation of gallic acid in industry are understood. Second, the corrosion inhibition principles and research progress of gallic acid as a metal corrosion inhibitor are presented. Then, the corrosion inhibition principles and research progress of gallic acid involved in the synthesis and modification of various rust conversion coatings, nano-coatings and organic resin coatings are described. After that, studies related to the evaluation and prediction of gallic acid corrosion inhibition on metals by quantum chemical methods are presented. Finally, new research ideas on gallic acid in the field of corrosion inhibition and protection of metals are summarized.

Findings

Gallic acid can be used as a corrosion inhibitor or coating in metal protection.

Research limitations/implications

There is a lack of research on the synergistic improvement of gallic acid and other substances.

Practical implications

The specific application of gallic acid in the field of metal protection was summarized, and the future research focus was put forward.

Originality/value

To the best of the authors’ knowledge, this paper systematically expounds on the research progress of gallic acid in the field of metal protection for the first time and provides new ideas and directions for future research.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 September 2023

Donghui Hu, Shenyou Song, Zongxing Zhang and Linfeng Wang

This paper aims to figure out the conundrum that the corrosion resistance longevity of steel wires for bridge cables was arduous to meet the requirements.

Abstract

Purpose

This paper aims to figure out the conundrum that the corrosion resistance longevity of steel wires for bridge cables was arduous to meet the requirements.

Design/methodology/approach

The “two-step” hot-dip coating process for cable steel wires was developed, which involved first hot-dip galvanizing and then hot-dip galvanizing of aluminum magnesium alloy. The corrosion rate, polarization curve and impedance of Zn–6Al–1Mg and Zn–10Al–3Mg alloy-coated steel wires were compared through acetate spray test and electrochemical test, and the corrosion mechanism of Zn–Al–Mg alloy-coated steel wires was revealed.

Findings

The corrosion resistance of Zn–10Al–3Mg alloy-coated steel wires had the best corrosion resistance, which was more than seven times that of pure zinc-coated steel wires. The corrosion current of Zn–10Al–3Mg alloy-coated steel wires was lower than that of Zn–6Al–1Mg alloy-coated steel wires, whereas the capacitive arc and impedance value of the former were higher than that of the latter, making it clear that the corrosion resistance of Zn–10Al–3Mg was better than that of Zn–6Al–1Mg alloy coating. Moreover, the Zn–Al–Mg alloy-coated steel wires for bridge cables had the function of coating “self-repairing.”

Originality/value

Controlling the temperature and time of the hot dip galvanizing stage can reduce the thickness of transition layer and solve the problem of easy cracking of the transition layer in the Zn–Al–Mg alloy coating due to the Sandelin effect.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 95