Search results

1 – 6 of 6
Article
Publication date: 3 April 2017

Osama A.B. Hassan and Rasmus Anderstedt

The purpose of this study is to attempt to compare experimental results for a number of models for the prediction of the drying time of new concrete floors. The investigated…

Abstract

Purpose

The purpose of this study is to attempt to compare experimental results for a number of models for the prediction of the drying time of new concrete floors. The investigated methods are the table method, the Swedish Concrete Association (SCA) method and the free computer programme TorkaS 3.2.

Design/methodology/approach

The comparison is based on moisture measurements of four different floor specimens. The specimens have different ratios (w/c = 0.38, 0.6 and 0.7).

Findings

The results show that there is a good agreement between the table method and the measured values on the specimens with high water-cement ratio (w/c = 0.6 and 0.7). However, the deviation becomes greater at lower water-cement ratio (w/c 0.38). TorkaS also resulted in a good agreement with the measurements. However, it is noted that as the drying time increases, the programme exhibits a slow dehydration trend at higher w/c ratios. The SCA method shows various results within the permissible deviation. Moreover, the moisture distribution in concrete with high w/c ratios is found to be mainly influenced by moisture diffusion and little by self-desiccation.

Research limitations/implications

This study is limited to concrete slabs that are drying from one side in an enclosed building with an heating, ventilation and air conditioning (HVAC) system operating normally. Moreover, this study concerns concrete without special additives (e.g. silica fumes), which can be used in some specific cases to accelerate or retard the hydration (cure) process.

Practical implications

These compared methods are used widely in Sweden; therefore, it will be interesting to understand their applicability range. Another focus in this paper is to investigate how the effect of self-desiccation of concrete is related to the w/c ratios, taking into consideration the result of these prediction models.

Social implications

The paper can suit academic researchers, as well as the commercial industries, in a sense that the comparative study will pave a way to the best method to be used for drying time estimation.

Originality/value

The paper contains new information and could be useful to researchers and commercial industries.

Details

Journal of Engineering, Design and Technology, vol. 15 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 26 March 2024

Rawan Ramadan, Hassan Ghanem, Jamal M. Khatib and Adel M. ElKordi

The purpose of this paper is to check the feasibility of using biomaterial such as of Phragmites-Australis (PA) in cement paste to achieve sustainable building materials.

Abstract

Purpose

The purpose of this paper is to check the feasibility of using biomaterial such as of Phragmites-Australis (PA) in cement paste to achieve sustainable building materials.

Design/methodology/approach

In this study, cement pastes were prepared by adding locally produced PA fibers in four different volumes: 0%, 0.5%, 1% and 2% for a duration of 180 days. Bottles and prisms were subjected to chemical shrinkage (CS), drying shrinkage (DS), autogenous shrinkage (AS) and expansion tests. Besides, prism specimens were tested for flexural strength and compressive strength. Furthermore, a mathematical model was proposed to determine the variation length change as function of time.

Findings

The experimental findings showed that the mechanical properties of cement paste were significantly improved by the addition of 1% PA fiber compared to other PA mixes. The effect of increasing the % of PA fibers reduces the CS, AS, DS and expansion of cement paste. For example, the addition of 2% PA fibers reduces the CS, expansion, AS and DS at 180 days by 36%, 20%, 13% and 10%, respectively compared to the control mix. The proposed nonlinear model fit to the experimental data is appropriate with R2 values above 0.92. There seems to be a strong positive linear correlation between CS and AS/DS with R2 above 0.95. However, there exists a negative linear correlation between CS and expansion.

Research limitations/implications

The PA used in this study was obtained from one specific location. This can exhibit a limitation as soil type may affect PA properties. Also, one method was used to treat the PA fibers.

Practical implications

The utilization of PA fibers in paste may well reduce the formation of cracks and limit its propagation, thus using a biomaterial such as PA in cementitious systems can be an environmentally friendly option as it will make good use of the waste generated and enhance local employment, thereby contributing toward sustainable development.

Originality/value

To the authors best knowledge, there is hardly any research on the effect of PA on the volume stability of cement paste. Therefore, the research outputs are considered to be original.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 4 May 2020

Huy Quang Do, Shashank Bishnoi and Karen Louise Scrivener

This paper aims to develop a numerical, micromechanical model to predict the evolution of autogenous shrinkage of hydrating cement paste at early age (up to 7 days). Autogeneous…

Abstract

Purpose

This paper aims to develop a numerical, micromechanical model to predict the evolution of autogenous shrinkage of hydrating cement paste at early age (up to 7 days). Autogeneous shrinkage can be important in high-performance concrete characterized by low water to cement (w/c) ratios. The occurrence of this phenomenon during the first few days of hardening may result in early-age cracking in concrete structures. A good prediction of autogeneous shrinkage is necessary to achieve better understanding of the mechanisms and the deployment of effective measures to prevent early-age cracking.

Design/methodology/approach

Three-dimensional digital microstructures from the hydration modelling platform μic of cement paste were used to simulate macroscopic autogenous shrinkage based on the mechanism of capillary tension. Elastic and creep properties of the digital microstructures were calculated by means of finite element (FE) method homogenization. Autogenous shrinkage was then estimated as the average hydrostatic strain resulting from the capillary stress that was globally applied on the simulated digital microstructures. For this estimation, two approaches of homogenization technique, i.e. analytical poro-elasticity and numerical creep-superposition were used.

Findings

The comparisons of between the simulated and experimentally measured deformations indicate that the creep-superposition approach is more reasonable to estimate shrinkage at different water to cement ratios. It was found that better estimations could be obtained at low degrees of hydration, by assuming a loosely packed calcium silicate hydrates (C-S-H) growing in the microstructures. The simulation results show how numerical models can be used to upscale from microscopic characteristics of phases to macroscopic composite properties such as elasticity, creep and shrinkage.

Research limitations/implications

While the good predictions of some cement paste properties from the microstructure at early age were obtained, the current models have several limitations that are needed to overcome in the future. Firstly, the limitation of pore-structure representation is not only from lack understanding of C-S-H structure but also from the computational complexity. Secondly, the models do not consider early-age expansion that usually happens in practice and appears to be superimposed on an underlying shrinkage as observed in experiments. Thirdly, the simplified assumptions for mechanical simulation do not accurately reflect the solid–liquid interactions in the real partially saturated system, for example, the globally applying capillary stress on the boundary of the microstructure to find the effective deformation, neglecting water flow and the pore pressure. Last but not least, the models, due to the computational complexities, use many simplifications such as FE approximation, mechanical phase properties and creep statistical data.

Originality/value

This study holistically tackles the phenomenon of autogeneous shrinkage through microstructural modelling. In a first such attempt, the authors have used the same microstructural model to simulate the microstructural development, elastic properties, creep and autogeneous shrinkage. The task of putting these models together was not simple. The authors have successfully handled several problems at each step in an elegant manner. For example, although several earlier studies have pointed out that discrete models are unable to capture the late setting times of cements due to mesh effects, this study offers the most effective solution yet on the problem. It is also the first time that creep and shrinkage have been modelled on a young evolving microstructure that is subjected to a time variable load.

Details

Engineering Computations, vol. 37 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 July 2013

Giovanna Xotta, Valentina A. Salomoni and Carmelo E. Majorana

Knowledge of the behavior of concrete at mesoscale level requires, as a fundamental aspect, to characterize aggregates and specifically, their thermal properties if fire hazards…

Abstract

Purpose

Knowledge of the behavior of concrete at mesoscale level requires, as a fundamental aspect, to characterize aggregates and specifically, their thermal properties if fire hazards (e.g. spalling) are accounted for. The assessment of aggregates performance (and, correspondingly, concrete materials made of aggregates, cement paste and ITZ – interfacial transition zone) is crucial for defining a realistic structural response as well as damage scenarios.

Design/methodology/approach

It is here assumed that concrete creep is associated to cement paste only and that creep obeys to the B3 model proposed by Bažant and Baweja since it shows good compatibility with experimental results and it is properly justified theoretically.

Findings

First, the three‐dimensionality of the geometric description of concrete at the meso‐level can be appreciated; then, creep of cement paste and ITZ allows to incorporate in the model the complex reality of creep, which is not only a matter of fluid flow and pressure dissipation but also the result of chemical‐physical reactions; again, the description of concrete as a composite material, in connection with porous media analysis, allows for understanding the hygro‐thermal and mechanical response of concrete, e.g. hygral barriers due to the presence of aggregates can be seen only at this modelling level. Finally, from the mechanical viewpoint, the remarkable damage peak effect arising from the inclusion of ITZ, if compared with the less pronounced peak when ITZ is disregarded from the analysis, is reported.

Originality/value

The fully coupled 3D F.E. code NEWCON3D has been adopted to perform fully coupled thermo‐hygro‐mechanical meso‐scale analyses of concrete characterized by aggregates of various types and various thermal properties. The 3D approach allows for differentiating each constituent (cement paste, aggregate and ITZ), even from the point of view of their rheologic behaviour. Additionally, model B3 has been upgraded by the calculation of the effective humidity state when evaluating drying creep, instead than using approximate expressions. Damage maps allows for defining an appropriate concrete mixture to withstand spalling and to characterize the coupled behaviour of ITZ as well.

Article
Publication date: 11 October 2021

Vikram Singh Kashyap, Gaurav Sancheti and Jitendra Singh Yadav

The purpose of this study is to perform comprehensive investigation to assess the mechanical properties of nano-modified ternary cement concrete blend. Nano silica (NS) (1%, 2…

Abstract

Purpose

The purpose of this study is to perform comprehensive investigation to assess the mechanical properties of nano-modified ternary cement concrete blend. Nano silica (NS) (1%, 2% and 3%) and waste marble dust powder (MD) (5%, 10% and 15%) was incorporated as a fractional substitution of cement in the concrete matrix.

Design/methodology/approach

In this experimental study, 10 cementitious blends were prepared and tested for compressive strength, flexural strength, splitting tensile strength and static modulus of elasticity. The microstructural characteristics of these blends were also explored using a scanning electron microscope along with energy dispersive spectroscopy and X-ray reflection.

Findings

The results indicate an enhancement in mechanical properties and refinement in pore structure due to improved pozzolanic activities of NS and the filling effect of MD.

Originality/value

To the best of the authors’ knowledge, no study has reported the mechanical and microstructural behavior of concrete containing marble and NS.

Details

Journal of Engineering, Design and Technology , vol. 21 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 19 September 2008

Valentina A. Salomoni, Carmelo E. Majorana, Giuseppe M. Giannuzzi and Adio Miliozzi

The purpose of this paper is to describe an experience of R&D in the field of new technologies for solar energy exploitation within the Italian context. Concentrated solar power…

1238

Abstract

Purpose

The purpose of this paper is to describe an experience of R&D in the field of new technologies for solar energy exploitation within the Italian context. Concentrated solar power systems operating in the field of medium temperatures are the main research objectives, directed towards the development of a new and low‐cost technology to concentrate the direct radiation and efficiently convert solar energy into high‐temperature heat.

Design/methodology/approach

A multi‐tank sensible‐heat storage system is proposed for storing thermal energy, with a two‐tanks molten salt system. In the present paper, the typology of a below‐grade cone shape storage is taken up, in combination with nitrate molten salts at 565°C maximum temperature, using an innovative high‐performance concrete for structures absolving functions of containment and foundation.

Findings

Concrete durability in terms of prolonged thermal loads is assessed. The interaction between the hot tank and the surrounding environment (ground) is considered. The developed FE model simulates the whole domain, and a fixed heat source of 100°C is assigned to the internal concrete surface. The development of the thermal and hygral fronts within the tank thickness are analysed and results discussed for long‐term scenarios.

Originality/value

Within the medium temperature field, an innovative approach is here presented for the conceptual design of liquid salts concrete storage systems. The adopted numerical model accounts for the strong coupling among moisture and heat transfer and the mechanical field. The basic mathematical model is a single fluid phase non‐linear diffusion one based on the theory by Bažant; appropriate thermodynamic and constitutive relationships are supplemented to enhance the approach and catch the effects of different fluid phases (liquid plus gas).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 18 no. 7/8
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 6 of 6