Search results

1 – 10 of 41
Article
Publication date: 4 December 2023

Bahareh Nikmehr, Bidur Kafle and Riyadh Al-Ameri

Concrete, the second most used material in the world, surpassed only by water, relies on a vast amount of cement. The process of cement production emits substantial amounts of…

Abstract

Purpose

Concrete, the second most used material in the world, surpassed only by water, relies on a vast amount of cement. The process of cement production emits substantial amounts of carbon dioxide (CO2). Consequently, it is crucial to search for cement alternatives. Geopolymer concrete (GC) uses industrial by-product material instead of traditional cement, which not only reduces CO2 emissions but also enhances concrete durability. On the other hand, the disposal of concrete waste in the landfills represents a significant environmental challenge, emphasising the urgent need for sustainable solutions. This study aimed to investigate waste concrete's best form and rate as the alternative aggregates in self-compacting and ambient-cured GC to preserve natural resources, reduce construction and demolition waste and decrease pertinent CO2 emissions. The binding material employed in this research encompasses fly ash, slag, micro fly ash and anhydrous sodium metasilicate as an alkali activator. It also introduces the best treatment method to improve the recycled concrete aggregate (RCA) quality.

Design/methodology/approach

A total of25%, 50% and 100% of coarse aggregates are replaced with RCAs to cast self-compacting geopolymer concrete (SCGC) and assess the impact of RCA on the fresh, hardened and water absorption properties of the ambient-cured GC. Geopolymer slurry was used for coating RCAs and the authors examined the effect of one-day and seven-day cured coated RCA. The mechanical properties (compressive strength, splitting tensile strength and modulus of elasticity), rheological properties (slump flow, T500 and J-ring) and total water absorption of RCA-based SCGC were studied. The microstructural and chemical compositions of the concrete mixes were studied by the methods of energy dispersive X-Ray and scanning electron microscopy.

Findings

It is evident from the test observations that 100% replacement of natural aggregate with coated RCA using geopolymer slurry containing fly ash, slag, micro fly ash and anhydrous sodium metasilicate cured for one day before mixing enhances the concrete's quality and complies with the flowability requirements. Assessment is based on the fresh and hardened properties of the SCGC with various RCA contents and coating periods. The fresh properties of the mix with a seven-day curing time for coated RCA did not meet the requirements for self-compacting concrete, while this mix demonstrated better compressive strength (31.61 MPa) and modulus of elasticity (15.39 GPa) compared to 29.36 MPa and 9.8 GPa, respectively, for the mix with one-day cured coated RCA. However, incorporating one-day-cured coated RCA in SCGC demonstrated better splitting tensile strength (2.32 MPa) and water absorption (15.16%).

Research limitations/implications

A potential limitation of this study on SCGC with coated RCAs is the focus on the short-term behaviour of this concrete. This limited time frame may not meet the long-term requirements for ensuring the sustained durability of the structures throughout their service life.

Originality/value

This paper highlights the treatment technique of coating RCA with geopolymer slurry for casting SCGC.

Details

Smart and Sustainable Built Environment, vol. 13 no. 2
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 7 July 2023

Ala'aldin Al-Hassoun and Rabab Allouzi

Concrete-filled double skin steel tubes (CFDST) columns are taken more attention due to their ability to withstand high structural loads in structures such as high-rise buildings…

Abstract

Purpose

Concrete-filled double skin steel tubes (CFDST) columns are taken more attention due to their ability to withstand high structural loads in structures such as high-rise buildings, bridges' piers, offshore and marine structures. This paper is intended to improve the CFDST column's capacity without the need to increase the column's size to maintain its lightweight by filling it with self-compacted concrete (SCC) containing nanoclay (NC).

Design/methodology/approach

First, experimental investigation is conducted to select the optimal NC percentage that improves the mechanical properties. Different mixing method, mixture ingredients, cement content, and NC percentage are considered. Then, slender and short CFDST columns are tested for axial capacity to investigate the effect of adding the optimum NC percentage on column's capacity and failure mode.

Findings

The test results show that adding 3% NC by cement weight using dry mixing method to SCC is the optimum ratio. It is concluded that adding 3% NC by cement weight increased the CFDST column's capacity, especially the specimens with higher slenderness ratio. Moreover, it is concluded that more specimens should be tested under various geometric and reinforcement details.

Originality/value

Recently, CFDST tube columns solve many structural and architectural problems that engineers have encountered in traditional systems. Therefore, more studies are required to design high-performance columns capable of carrying complex loads with high efficiency since the traditional design could not achieve the required performance. Since concrete contributes to a large portion in the axial capacity of the CFDST columns, it is proposed to improve the CFDST column's capacity without the need to increase the column's size to maintain its lightweight by filling it with (SCC containing NC. Previous research has affirmed the effectiveness of employing nanoclay in the concrete's workability, durability, microstructures, and mechanical properties.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 26 December 2023

Manjunatha M. and Kavitha T.S.

The purpose of this study is to investigate the behaviour of M40 grade of self-compacting concrete (SCC) with high volume of ground granulated blast furnace slag (GGBS) (50%) and…

Abstract

Purpose

The purpose of this study is to investigate the behaviour of M40 grade of self-compacting concrete (SCC) with high volume of ground granulated blast furnace slag (GGBS) (50%) and recycled concrete aggregate (RCA) content up to 100% to assess the mechanical properties of SCC. As per guidelines of IS: 383 – 2016, the RCA can be replaced up to 20% of natural coarse aggregate up to M25 grade of concrete. This study assesses the mechanical properties of SCC beyond 20% of RCA content. Based on the experimental investigations, the compressive strength of mixes decreases as the content of RCA increases. It is found that concrete mixes with 20% RCA and shows the maximum compressive strength at 56 days.

Design/methodology/approach

The fresh properties as per EFNARC and IS: 10262–2019 guidelines, ultrasonic pulse velocity testing, mechanical properties and microstructure analysis have been conducted to evaluate the performance of SCC with RCA for practical applications.

Findings

From the experimental investigations, it is found that up to 50% of recycled coarse aggregate can be used for structural applications.

Originality/value

The environmental pollution and dumping of waste on green land can be reduced by effective utilization of recycled coarse aggregate and GGBS in the production of SCC.

Article
Publication date: 17 March 2022

Maher Taha El-Nimr, Ali Mohamed Basha, Mohamed Mohamed Abo-Raya and Mohamed Hamed Zakaria

To predict the real behavior of the full-scale model using a scale model, optimized simulation should be achieved. In reinforced concrete (RC) models, scaling can be substantially…

Abstract

Purpose

To predict the real behavior of the full-scale model using a scale model, optimized simulation should be achieved. In reinforced concrete (RC) models, scaling can be substantially more critical than in single-material models because of multiple reasons such as insufficient bonding strength between small-diameter steel bars and concrete, and excessive aggregate size. Overall, there is a shortfall of laboratory and field-testing studies on the behavior of secant pile walls under lateral and axial loads. Accordingly, the purpose of this study is to investigate the validity and the performance of the 1/10th scaled RC secant pile wall under the influence of different types of loading.

Design/methodology/approach

The structural performance of the examined models was evaluated using two types of tests: bending and axial compression. A self-compacting concrete mix was suggested, which provided the best concrete mix workability and appropriate compressive strength.

Findings

Under axial and bending loads, the failure modes were typical. Where the plain and reinforced concrete piles worked in tandem to support the load throughout the loading process, even when they failed. The experimental results were relatively consistent with some empirical equations for calculating the modulus of elasticity and critical buckling load. This confirmed the validity of the proposed model.

Originality/value

According to the analysis and verification of experimental tests, the proposed 1/10th scaled RC secant pile model can be used for future laboratory purposes, especially in the field of geotechnical engineering.

Details

World Journal of Engineering, vol. 20 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 13 September 2022

Chaitanya D.V.S.K. and Naga Satish Kumar Ch.

This study aims on a broad review of Concrete's Rheological Properties. The Concrete is a commonly used engineering material because of its exquisite mechanical interpretation…

Abstract

Purpose

This study aims on a broad review of Concrete's Rheological Properties. The Concrete is a commonly used engineering material because of its exquisite mechanical interpretation, but the addition of constituent amounts has significant effects on the concrete’s fresh properties. The workability of the concrete mixture is a short-term property, but it is anticipated to affect the concrete’s long-term property.

Design/methodology/approach

In this review, the concrete and workability definition; concrete’s rheology models like Bingham model, thixotropy model, H-B model and modified Bingham model; obtained rheological parameters of concrete; the effect of constituent’s rheological properties, which includes cement and aggregates; and the concrete’s rheological properties such as consistency, mobility, compatibility, workability and stability were studied in detail.

Findings

Also, this review study has detailed the constituents and concrete’s rheological properties effects. Moreover, it exhibits the relationship between yield stress and plastic viscosity in concrete’s rheological behavior. Hence, several methods have been reviewed, and performance has been noted. In that, the abrasion resistance concrete has attained the maximum compressive strength of 73.6 Mpa; the thixotropy approach has gained the lowest plastic viscosity at 22 Pa.s; and the model coaxial cylinder has recorded the lowest stress rate at 8 Pa.

Originality/value

This paper especially describes the possible strategies to constrain improper prediction of concrete’s rheological properties that make the workability and rheological behavior prediction simpler and more accurate. From this, future guidelines can afford for prediction of concrete rheological behavior by implementing novel enhancing numerical techniques and exploring the finest process to evaluate the workability.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 October 2022

Parvathidevi A. and Naga Satish Kumar Ch

This study aims to assess the efficacy of thermal analysis of concrete slabs by including different insulation materials using ANSYS. Regression equations were proposed to predict…

Abstract

Purpose

This study aims to assess the efficacy of thermal analysis of concrete slabs by including different insulation materials using ANSYS. Regression equations were proposed to predict the thermal conductivity using concrete density. As these simulation and regression analyses are essential tools in designing the thermal insulation concretes with various densities, they sequentially reduce the associated time, effort and cost.

Design/methodology/approach

Two grades of concretes were taken for thermal analysis. They were designed by replacing the natural fine aggregates with thermal insulation aggregates: expanded polystyrene, exfoliated vermiculite and light expanded clay. Density, temperature difference, specific heat capacity, thermal conductivity and time were measured by conducting experiments. This data was used to simulate concrete slabs in ANSYS. Regression analysis was performed to obtain the relation between density and thermal conductivity. Finally, the quality of the predicted regression equations was assessed using root mean square error (RMSE), mean absolute error (MAE), integral absolute error (IAE) and normal efficiency (NE).

Findings

ANSYS analysis on concrete slabs accurately estimates the thermal behavior of concrete, with lesser error value ranges between 0.19 and 7.92%. Further, the developed regression equations proved accurate with lower values of RMSE (0.013 to 0.089), MAE (0.009 to 0.088); IAE (0.216 to 5.828%) and higher values of NE (94.16 to 99.97%).

Originality/value

The thermal analysis accurately simulates the experimental transfer of heat across the concrete slab. Obtained regression equations proved helpful while designing the thermal insulation concrete.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 14 March 2022

Aissa Boucedra and Madani Bederina

This study aims to the framework of the development of a new sand concrete, essentially manufactured with river/dune sand and recycled plastic aggregates (PAs; 0/3.15 mm). This…

88

Abstract

Purpose

This study aims to the framework of the development of a new sand concrete, essentially manufactured with river/dune sand and recycled plastic aggregates (PAs; 0/3.15 mm). This new concrete may have a great interest, as it can enable us to achieve the best economical, technical and ecological solutions for local construction problems. Given the high abundance of dune sand (DS) and the large quantities of plastic waste, plastic–mineral sand concrete can be a good alternative to the ordinary building materials available on the local market.

Design/methodology/approach

A replacement of sand by PAs is made by volume substitution. The plastic percentages laid down are 0%, 25%, 50% and 100%. Indeed, after a general experimental characterization of the studied composites, the investigation mainly concentrated on the study of the effect of the addition of plastic particles on the accelerated carbonation of river sand (RS) concrete and DS concrete, separately.

Findings

The density of the composites and consequently their compressive strength are slightly reduced; but their thermal insulation is significantly improved. Their structure seems to be homogeneous, the plastic grains are well distributed in the matrix and the adhesion “plastic–matrix” is good. At small plastic contents, the RS concrete is slightly better. As regards the carbonation results, the PAs significantly contribute to the improvement of the resistance of the composite against carbonation effect. It can be observed that increasing the proportion of plastic particles in sand concrete considerably decreases the thickness of the carbonated concrete.

Originality/value

The studies led on the behavior of plastic concrete, particularly in arid zones, are very limited. Moreover, for sand concrete, there are no similar studies. Therefore, the characterization of such materials is necessary. In addition of thermo-mechanical characterization, this work aims at studying the durability of the material, especially its resistance to carbonation. On the other hand, this work has a significant positive impact on both environment and economy, since it focuses on the recycling of industrial waste, and the valorization of DS, which is available in great quantities in south of Algeria.

Details

World Journal of Engineering, vol. 20 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 May 2023

Vijaya Prasad Burle, Tattukolla Kiran, N. Anand, Diana Andrushia and Khalifa Al-Jabri

The construction industries at present are focusing on designing sustainable concrete with less carbon footprint. Considering this aspect, a Fibre-Reinforced Geopolymer Concrete…

Abstract

Purpose

The construction industries at present are focusing on designing sustainable concrete with less carbon footprint. Considering this aspect, a Fibre-Reinforced Geopolymer Concrete (FGC) was developed with 8 and 10 molarities (M). At elevated temperatures, concrete experiences deterioration of its mechanical properties which is in some cases associated with spalling, leading to the building collapse.

Design/methodology/approach

In this study, six geopolymer-based mix proportions are prepared with crimped steel fibre (SF), polypropylene fibre (PF), basalt fibre (BF), a hybrid mixture consisting of (SF + PF), a hybrid mixture with (SF + BF), and a reference specimen (without fibres). After temperature exposure, ultrasonic pulse velocity, physical characteristics of damaged concrete, loss of compressive strength (CS), split tensile strength (TS), and flexural strength (FS) of concrete are assessed. A polynomial relationship is developed between residual strength properties of concrete, and it showed a good agreement.

Findings

The test results concluded that concrete with BF showed a lower loss in CS after 925 °C (i.e. 60 min of heating) temperature exposure. In the case of TS, and FS, the concrete with SF had lesser loss in strength. After 986 °C and 1029 °C exposure, concrete with the hybrid combination (SF + BF) showed lower strength deterioration in CS, TS, and FS as compared to concrete with PF and SF + PF. The rate of reduction in strength is similar to that of GC-BF in CS, GC-SF in TS and FS.

Originality/value

Performance evaluation under fire exposure is necessary for FGC. In this study, we provided the mechanical behaviour and physical properties of SF, PF, and BF-based geopolymer concrete exposed to high temperatures, which were evaluated according to ISO standards. In addition, micro-structural behaviour and linear polynomials are observed.

Details

Journal of Structural Fire Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 2 February 2024

Nilesh R. Parmar, Sanjay R. Salla, Hariom P. Khungar and B. Kondraivendhan

This study aims to characterize the behavior of blended concrete, including metakaolin (MK) and quarry dust (QD), as supplementary cementing materials. The study focuses on…

Abstract

Purpose

This study aims to characterize the behavior of blended concrete, including metakaolin (MK) and quarry dust (QD), as supplementary cementing materials. The study focuses on evaluating the effects of these materials on the fresh and hardened properties of concrete.

Design/methodology/approach

MK, a pozzolanic material, and QD, a fine aggregate by-product, are potentially sustainable alternatives for enhancing concrete performance and reducing environmental impact. The addition of different percentages of MK enhances the pozzolanic reaction, resulting in improved strength development. Furthermore, the optimum dosage of MK, mixed with QD, and mechanical properties like compressive, flexural and split tensile strength of concrete were evaluated to investigate the synergetic effect of MK and quarry dust for M20-grade concrete.

Findings

The results reveal the influence of metakaolin and QD on the overall performance of blended concrete. Cost analysis showed that the optimum mix can reduce the 7%–8% overall cost of the materials for M20-grade concrete. Energy analysis showed that the optimum mix can reduce 7%–8% energy consumption.

Originality/value

The effective utilization is determined with the help of the analytical hierarchy process method to find an optimal solution among the selected criteria. According to the AHP analysis, the optimum content of MK and quarry dust is 12% and 16%, respectively, performing best among all other trial mixes.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 14 December 2023

Prathamesh Gaikwad and Sandeep Sathe

The purpose of this paper is to study and analyze the effects of fly ash (FA) as a mineral admixture on compressive strength (CS), carbonation resistance and corrosion resistance…

Abstract

Purpose

The purpose of this paper is to study and analyze the effects of fly ash (FA) as a mineral admixture on compressive strength (CS), carbonation resistance and corrosion resistance of reinforced concrete (RC). In addition, the utilization of inexpensive and abundantly available FA as a cement replacement in concrete has several benefits including reduced OPC usage and elimination of the FA disposal problem.

Design/methodology/approach

Reinforcement corrosion and carbonation significantly affect the strength and durability of the RC structures. Also, the utilization of FA as green corrosion inhibitors, which are nontoxic and environmentally friendly alternatives. This review discusses the effects of FA on the mechanical characteristics of concrete. Also, this review analyzes the impact of FA as a partial replacement of cement in concrete and its effect on the depth of carbonation in concrete elements and the corrosion rate of embedded steel as well as the chemical composition and microstructure (X-ray diffraction analysis and scanning electron microscopy) of FA concrete were also reviewed.

Findings

This review provides a clear analysis of the available study, providing a thorough overview of the current state of knowledge on this topic. Regarding concrete CS, the findings indicate that the incorporation of FA often leads to a loss in early-age strength. However, as the curing period increased, the strength of fly ash concrete (FAC) increased with or even surpassed that of conventional concrete. Analysis of the accelerated carbonation test revealed that incorporating FA into the concrete mix led to a shallower carbonation depth and slower diffusion of carbon dioxide (CO2) into the concrete. Furthermore, the half-cell potential test shows that the inclusion of FA increases the durability of RC by slowing the rate of steel-reinforcement corrosion.

Originality/value

This systematic review analyzes a wide range of existing studies on the topic, providing a comprehensive overview of the research conducted so far. This review intends to critically assess the enhancements in mechanical and durability attributes (such as CS, carbonation and corrosion resistance) of FAC and FA-RC. This systematic review has practical implications for the construction and engineering industries. This can support engineers and designers in making informed decisions regarding the use of FA in concrete mixtures, considering both its benefits and potential drawbacks.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 41