Search results

1 – 10 of 19
Article
Publication date: 1 December 2023

Wan Xu, Xinsheng Liu, Huijuan Zhang, Ting Huo, Zhenbin Chen and Yuan Sun

This study aims to prepare an imprinted composite membrane with grafted temperature-sensitive blocks for the efficient adsorption and separation of rhenium(Re) from aqueous…

Abstract

Purpose

This study aims to prepare an imprinted composite membrane with grafted temperature-sensitive blocks for the efficient adsorption and separation of rhenium(Re) from aqueous solutions.

Design/methodology/approach

PVDF resin membrane was used as the substrate, dopamine and chitosan (CS) were used to modify the membrane surface and temperature-sensitive block PDEA was grafted on the membrane surface. Then acrylic acid (AA) and N-methylol acrylamide (N-MAM) were used as the functional monomers, ethyleneglycol dimethacrylate (EGDMA) as the cross-linker and ascorbic acid-hydrogen peroxide (Vc-H2O2) as the initiator to obtain the temperature-sensitive ReO4 imprinted composite membranes.

Findings

The effect of the preparation process on the performance of CS–Re–TIICM was investigated in detail, and the optimal preparation conditions were as follows: the molar ratios of AA–NH4ReO4, N-MAM and EGDMA were 0.13, 0.60 and 1.00, respectively. The optimal temperature and time of the reaction were 40 °C and 24 h. The maximum adsorption capacity of CS–Re–TIICM prepared under optimal conditions was 0.1071 mmol/g, and the separation was 3.90 when MnO4 was used as the interfering ion. The quasi first-order kinetics model and Langmuir model were more suitable to describe the adsorption process.

Practical implications

With the increasing demand for Re, the recovery of Re from Re-containing secondary resources becomes important. This study demonstrated a new material that could be separated and recovered Re in a complex environment, which could effectively alleviate the conflict between the supply and demand of Re.

Originality/value

This contribution provided a new material for the selective separation and purification of ReO4, and the adsorption capacity and separation of CS–Re–TIICM were increased with 1.673 times and 1.219 time compared with other Re adsorbents, respectively. In addition, when it was used for the purification of NH4ReO4 crude, the purity was increased from 91.950% to 99.999%.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 14 December 2023

Yajun Chen, Zehuan Sui and Juan Du

This paper aims to focus on the research progress of intelligent self-healing anti-corrosion coatings in the aviation field in the past few years. The paper provides certain…

Abstract

Purpose

This paper aims to focus on the research progress of intelligent self-healing anti-corrosion coatings in the aviation field in the past few years. The paper provides certain literature review supports and development direction suggestions for future research on intelligent self-healing coatings in aviation.

Design/methodology/approach

This mini-review uses a systematic literature review process to provide a comprehensive and up-to-date review of intelligent self-healing anti-corrosion coatings that have been researched and applied in the field of aviation in recent years. In total, 64 articles published in journals in this field in the last few years were analysed in this paper.

Findings

The authors conclude that the incorporation of multiple external stimulus-response mechanisms makes the coatings smarter in addition to their original self-healing corrosion protection function. In the future, further research is still needed in the research and development of new coating materials, the synergistic release of multiple self-healing mechanisms, coating preparation technology and corrosion monitoring technology.

Originality/value

To the best of the authors’ knowledge, this is one of the few systematic literature reviews on intelligent self-healing anti-corrosion coatings in aviation. The authors provide a comprehensive overview of the topical issues of such coatings and present their views and opinions by discussing the opportunities and challenges that self-healing coatings will face in future development.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 16 August 2022

Zhao Yuhang, Zhicai Yu, Hualing He and Huizhen Ke

This study aims to fabricate a multifunctional electromagnetic interference (EMI) shielding composite fabric with simultaneous high-efficiency photothermal conversion and Joule…

Abstract

Purpose

This study aims to fabricate a multifunctional electromagnetic interference (EMI) shielding composite fabric with simultaneous high-efficiency photothermal conversion and Joule heating performances.

Design/methodology/approach

A multifunctional polypyrrole (PPy) hydrogel/multiwalled carbon nanotube (MWCNT)/cotton EMI shielding composite fabric (hereafter denoted as PHMC) was prepared by loading MWCNT onto tannin-treated cotton fabric, followed by in situ crosslinking-polymerization to synthesize three-dimensional (3D) conductive networked PPy hydrogel on the surface of MWCNT-coated cotton fabric.

Findings

Benefiting from the unique interconnected 3D networked conductive structure of PPy hydrogel, the obtained PHMC exhibited a high EMI-shielding effectiveness vale of 48 dB (the absorbing electromagnetic wave accounted for 84%) within a large frequency range (8.2–12.4 GHz). Moreover, the temperature of the laminated fabric reached 54°C within 900 s under 15 V, and it required more than 100 s to return to room temperature (28.7°C). When the light intensity was adjusted to 150 mW/cm2, the PHMC temperature was about 38.2°C after lighting for 900 s, indicating high-efficiency electro-photothermal effect function.

Originality/value

This paper provides a novel strategy for designing a type of multifunctional EMI shielding composite fabric with great promise for wearable smart garments, EMI shielding and personal heating applications.

Details

Pigment & Resin Technology, vol. 53 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 22 March 2024

Abhishek Kumar and Manpreet Manshahia

The aim of this study is to present an overview of sustainable practices in the development of waterproof breathable fabrics for garments. It aims to provide insights into the…

Abstract

Purpose

The aim of this study is to present an overview of sustainable practices in the development of waterproof breathable fabrics for garments. It aims to provide insights into the current state of academic research in this domain and identify and analyze major sustainable trends in the field.

Design/methodology/approach

This study conducts a thorough examination of research publications sourced from the Scopus database spanning the years 2013–2023 by employing a systematic approach. The research utilizes both descriptive analysis and content analysis to identify trends, notable journals and leading countries in sustainable waterproof breathable fabric development.

Findings

The study reveals a notable increase in studies focusing on sustainable approaches in the development of waterproof breathable fabrics for garments. Descriptive analysis highlights the most prominent journal and leading country in terms of research volume. Content analysis identifies four key trends: minimizing chemical usage, developing easily degradable materials, creating fabrics promoting health and well-being and initiatives to reduce energy consumption.

Research limitations/implications

The main limitation of this research lies in its exclusive reliance on the Scopus database.

Practical implications

The insights derived from this study offer practical guidance for prospective researchers interested in investigating sustainable approaches to developing waterproof breathable fabric for garments. The identified trends provide a foundation for aligning research endeavors with contemporary global perspectives, facilitating the integration of sustainable methodologies into the garment industry.

Originality/value

This systematic literature review contributes original insights by synthesizing current research trends and outlining evolving sustainable practices in the development of waterproof breathable fabrics. The identification of key focus areas adds a novel perspective to existing knowledge.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Book part
Publication date: 20 November 2023

Sema Üstgörül

Key enabling technologies (KETs) are a set of six technological components that work together to address social challenges and build advanced for sustainable economies. Industry…

Abstract

Key enabling technologies (KETs) are a set of six technological components that work together to address social challenges and build advanced for sustainable economies. Industry 5.0, the next industrial development, is designed to capitalize on specialists' unique creativity while also collaborating with powerful, intelligent, and precise technologies. Industry 5.0 outsourced repetitive and monotonous activities to robots/machines requiring employees to perform activities that involve critical thinking and are based on the 6R (Recognize, Reconsider, Realize, Reduce, Reuse, and Recycle), to improve production quality. With numerous supporting technical advancements, advanced and quick manufacturing concentrating on the interaction of machines and humans may be produced. Maintaining healthcare and nursing care, evaluating patients' health requirements using KETs, and giving care with manpower are all major advancements in Industry 5.0 today. Future studies may focus on providing healthcare using mainly technology and, therefore, no human workers. This chapter highlights healthcare advances in Industry 5.0, where KETs and people collaborate to create and innovate. In this framework, the purpose of this chapter is to present the deployment of KETs in the nursing patient care process.

Details

Digitalization, Sustainable Development, and Industry 5.0
Type: Book
ISBN: 978-1-83753-191-2

Keywords

Article
Publication date: 17 November 2023

Jinyu Zhang, Danni Shen, Yuxiang Yu, Defu Bao, Chao Li and Jiapei Qin

This study aims to develop a four-dimensional (4D) textile composite that self-forms upon thermal stimulation while eliminating thermomechanical programming steps by using fused…

Abstract

Purpose

This study aims to develop a four-dimensional (4D) textile composite that self-forms upon thermal stimulation while eliminating thermomechanical programming steps by using fused deposition modeling (FDM) 3D printing technology, and tries to refine the product development path for this composite.

Design/methodology/approach

Polylactic acid (PLA) printing filaments were deposited on prestretched Lycra-knitted fabric using desktop-level FDM 3D printing technology to construct a three-layer structure of thermally responsive 4D textiles. Subsequently, the effects of different PLA thicknesses and Lycra knit fabric relative elongation on the permanent shape of thermally responsive 4D textiles were studied. Finally, a simulation program was written, and a case in this study demonstrates the usage of thermally responsive 4D textiles and the simulation program to design a wrist support product.

Findings

The constructed three-layer structure of PLA and Lycra knitted fabric can self-form under thermal stimulation. The material can also achieve reversible transformation between a permanent shape and multiple temporary shapes. Thinner PLA deposition and higher relative elongation of the Lycra-knitted fabric result in the greater curvature of the permanent shape of the thermally responsive 4D textile. The simulation program accurately predicted the permanent form of multiple basic shapes.

Originality/value

The proposed method enables 4D textiles to directly self-form upon thermal, which helps to improve the manufacturing efficiency of 4D textiles. The thermal responsiveness of the composite also contributes to building an intelligent human–material–environment interaction system.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 August 2023

Dalei Zhang, Xinwei Zhang, Enze Wei, Xiaohui Dou and Zonghao He

This study aims to improve the corrosion resistance of TA2-welded joints by superhydrophobic surface modification using micro-arc oxidation technology and low surface energy…

Abstract

Purpose

This study aims to improve the corrosion resistance of TA2-welded joints by superhydrophobic surface modification using micro-arc oxidation technology and low surface energy substance modification.

Design/methodology/approach

The microstructure and chemical state of the superhydrophobic film layer were analyzed using scanning electron microscopy, energy dispersive X-ray spectroscopy, three-dimensional morphology, X-ray diffraction, X-ray photoelectron spectroscopy and Fourier transform infrared absorption spectroscopy. The influence of the superhydrophobic film layer on the corrosion resistance of TA2-welded joints was investigated using classical electrochemical testing methods.

Findings

The characterization results showed that the super hydrophobic TiO2 ceramic membrane was successfully constructed on the surface of the TA2-welded joint, and the construction of the super hydrophobic film greatly improved the corrosion resistance of the TA2-welded joint.

Originality/value

The superhydrophobic TiO2 ceramic membrane has excellent corrosion resistance. The micro nanostructure in the superhydrophobic film can intercept air to form an air layer to prevent the corrosion medium from contacting the surface, thus, improving the corrosion resistance of the sample.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 25 August 2023

Xin Zhou, Wenbin Zhou, Yang Zheng Zhang, Meng-Ran Li, Haijing Sun and Jie Sun

This paper aims to study the corrosion inhibition behavior of imidazopyridine and its three derivatives on brass.

Abstract

Purpose

This paper aims to study the corrosion inhibition behavior of imidazopyridine and its three derivatives on brass.

Design/methodology/approach

The authors performed weight loss experiments, electrochemical experiments including the polarization curve and electrochemical impedance spectrum, corrosion morphology observation using scanning electron microscope (SEM) and atomic force microscope (AFM) and surface composition analysis via X-ray photoelectron spectroscopy (XPS) to analyze the corrosion inhibition behavior of imidazopyridine and its three derivatives on brass by using quantum chemical calculation (Gaussian 09), molecular dynamics simulation (M-S) and Langmuir adsorption isotherm.

Findings

According to the results, imidazole-pyridine and its derivatives were found to be modest or moderately mixed corrosion inhibitors; moreover, they were spontaneously adsorbed on the metal surface in a single-layer, mixed adsorption mode.

Originality/value

The corrosion inhibition properties of pyrazolo-[1,2-a]pyridine and its derivatives on brass in sulfuric acid solution were analyzed through weight loss and electrochemical experiments. Moreover, SEM and AFM were simultaneously used to observe the corrosion appearance. Furthermore, XPS was used to analyze the surface. Then, Gaussian 09 and M-S were combined along with the Langmuir adsorption isotherm to investigate the corrosion inhibition mechanism of imidazole-[1,2-a]pyridine and its derivatives.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 30 November 2023

Dong Chen, Rui Zhang and JiaCheng Jiang

This study aims to investigate the morphology and physicochemical properties of BiOBr/Polyvinylidene fluoride (PVDF) composite membranes and the differences in the properties of…

Abstract

Purpose

This study aims to investigate the morphology and physicochemical properties of BiOBr/Polyvinylidene fluoride (PVDF) composite membranes and the differences in the properties of BiOBr/PVDF composite membranes made by adding different precursor ratios during the casting process.

Design/methodology/approach

In this paper, sodium bromide and Bi(NO3)3 were used as precursors for the preparation of BiOBr photocatalysts, and PVDF membranes were modified by using the phase conversion method in conjunction with the in situ deposition method to produce BiOBr/PVDF hydrophilic composite membranes with both membrane separation and photocatalytic capabilities.

Findings

The characterization results confirmed that the composites were successfully and homogeneously co-mingled in the PVDF membranes. The related performance of the composite membrane was tested, and it was found that the composite membrane with the optimal precursor incorporation ratio had good photocatalytic efficiency and antipollution ability; the removal efficiencies of methyl orange, rhodamine B and methylene blue were 80.43%, 85.02% and 86.94%, respectively, in 2.5 h. The photocatalytic efficiency of composite membranes with different precursor ratios increased and then decreased with the increase of the precursor addition ratio.

Originality/value

The composite membrane is prepared by phase conversion method with in situ deposition method, and the BiOBr material has unique advantages for the degradation of organic dyes. The comprehensive experimental data can be known that the composite membrane prepared in this paper has high degradation efficiency and good durability for organic dyes.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 5 October 2023

Minakshi Koundal, Ajay Kumar Singh and Chhaya Sharma

This paper aims to investigate the eco-friendly neodymium tartrate (NdTar) inhibitor for mild steel in sodium chloride (NaCl) solution.

Abstract

Purpose

This paper aims to investigate the eco-friendly neodymium tartrate (NdTar) inhibitor for mild steel in sodium chloride (NaCl) solution.

Design/methodology/approach

The mild steel 1010 coupon was considered for the current study. Weight loss and the electrochemical methods were used to evaluate the inhibitory effects of neodymium chloride (NdCl3) and NdTar on mild steel in NaCl solution. Scanning electron microscopy, energy-dispersive X-ray analysis and attenuated total reflectance-Fourier transform infrared spectroscopy measurements were carried out to study the morphology and composition of the film, nature of deposits and corrosion products formed in test media on the corroded steel, with the objective of further analyzing the observed behavior of the two inhibitors.

Findings

Of the two, NdTar performs better than NdCl3 because it shields mild steel surfaces for longer. According to the results, when NdCl3 is present in a corrosive solution, the protective film only comprises Nd/Fe oxide/hydroxide/carbonate. However, when neodymium is coupled with the tartrate group (an organic group) and then added to the NaCl solution, the inhibitor film comprises both bimetallic complexes (Fe-Tar-Nd) and metal oxide/hydroxide/carbonate, which results in a more compact film and has higher inhibition efficiency.

Originality/value

This study evaluated the combined effects of inorganic and organic inhibitors with those of an inorganic inhibitor used alone for mild steel in NaCl solution.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 19