Search results

1 – 10 of over 1000
Article
Publication date: 6 February 2024

Farshid Rashidiyan, Seyed Rasoul Mirghaderi, Saeed Mohebbi and Sina Kavei

This research study focuses on investigating the seismic performance of non-straight beams in steel structures and exploring the mechanism by which plastic hinges are formed…

Abstract

Purpose

This research study focuses on investigating the seismic performance of non-straight beams in steel structures and exploring the mechanism by which plastic hinges are formed within these beams. The findings contribute to the understanding of their behaviour under seismic loads and offer insights into their potential for enhancing the lateral resistance of the structure. The abstract of the study highlights the significance of corners in structural plans, where non-coaxial columns, diagonal elements or beams deviating from a straight path are commonly observed. Typically, these non-straight beams are connected to the columns using pinned connections, despite their unknown seismic behaviour. Recognizing the importance of generating plastic hinges in special moment resisting frames and the lack of previous research on the involvement of these non-straight beams, this study aims to address this knowledge gap.

Design/methodology/approach

This study examines the seismic behaviour and plastic hinge formation of non-straight beams in steel structures. Non-straight beams are beams that connect non-coaxial columns and diagonal elements, or deviate from a linear path. They are usually pinned to the columns, and their seismic contribution is unknown. A critical case with a 12-m non-straight beam is analysed using Abaqus software. Different models are created with varying cross-section shapes and connection types between the non-straight beams. The models are subjected to lateral monotonic and cyclic loads in one direction. The results show that non-straight beams increase the lateral stiffness, strength and energy dissipation of the models compared to disconnected beams that act as two cantilevers.

Findings

The analysis results reveal several key findings. The inclusion of non-straight beams in the models leads to increased lateral stiffness, strength and energy dissipation compared to the scenario where the beams are disconnected and act as two cantilever beams. Plastic hinges are formed at both ends of the non-straight beam when a 3% drift is reached, contributing to energy damping and introducing plasticity into the structure. These results strongly suggest that non-straight beams play a significant role in enhancing the lateral resistance of the system. Based on the seismic analysis results, this study recommends the utilization of non-straight beams in special moment frames due to the formation of plastic hinges within these beams and their effective participation in resisting lateral seismic loads. This research fills a critical gap in understanding the behaviour of non-straight beams and provides valuable insights for structural engineers involved in the design and analysis of steel structures.

Originality/value

The authors believe that this research will greatly contribute to the knowledge and understanding of the seismic performance of non-straight beams in steel structures.

Article
Publication date: 30 October 2019

Sheng-cai Li and Guo Lin

The purpose of this paper is to study the seismic performance of the energy-saving block and invisible multi-ribbed frame composite walls (EBIMFCW), changing the shear-span ratio…

Abstract

Purpose

The purpose of this paper is to study the seismic performance of the energy-saving block and invisible multi-ribbed frame composite walls (EBIMFCW), changing the shear-span ratio as the test parameter, the low-cycle reciprocating loading tests of six 1/2 scale wall models were carried out.

Design/methodology/approach

The test design method and analysis are used for the seismic performance of the EBIMFCW.

Findings

With the increase of shear-span ratio: the walls tend to occur bending failure even more, the initial stiffness of the wall decreases, the overall ductility of the wall is improved and the walls tend to occur bending failure.

Originality/value

The previous studies do not involve the seismic performance of EBIMFCW under different shear-span ratios. Therefore, the paper studies the hysteresis behavior, ductility, stiffness degradation and energy dissipation performance of EBIMFCW under different shear-span ratios.

Details

International Journal of Structural Integrity, vol. 11 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 24 December 2021

Mohammadsina Sharifi Ghalehnoei

The purpose of this study is to develop the performance model of buildings designed by the seismic code 2800 against the explosion wave and determination of safety distance.

53

Abstract

Purpose

The purpose of this study is to develop the performance model of buildings designed by the seismic code 2800 against the explosion wave and determination of safety distance.

Design/methodology/approach

Analytical models of three-, five- and ten story structures that used moment frame system and also a ten-storey building with shaer wall designed based on the seismic code 2800 in term of design and nonlinear analysis were generated for use with Perform-3D software. Extensive parametric analysis is executed on different explosive loads with 100, 500, 1,000 and 5,000 Trinitrotoluene, soil types 2 and 3, models eqs and eqbs, the number of story buildings and the effect of shear wall to determine the safety distance based on collapse threshold performance (CP) level criterion.

Findings

The results indicate that by increasing the explosives mass from 100 to 5,000 kg and the number of the stories three and five induce increasing the safety distance of CP level in buildings to 4.5 meter and 3 meter times, respectively. Ten-story structures modeled on shear wall show very good performance because of stiffness rising and high energy absorption. In addition, by increasing the stories from five to ten, the amount of the safety distance reduces the CP level to 3.9 meter times.

Originality/value

The results of this work are meaningful for explosion-resistant design and damage assessments of reinforced concrete moment framed structures subjected to explosive explosion.

Details

World Journal of Engineering, vol. 20 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 September 2019

Nicolas El-Joukhadar, Konstantinos Tsiotsias and S. Pantazopoulou

Seismic assessment procedures of RC members quantify member strength, deformation capacity and failure mode using detailed information regarding member geometry and reinforcement…

Abstract

Purpose

Seismic assessment procedures of RC members quantify member strength, deformation capacity and failure mode using detailed information regarding member geometry and reinforcement amount and arrangement. However, the condition of the reinforcing materials is not explicitly accounted for in the calculation process. The paper aims to discuss this issue.

Design/methodology/approach

This problem is explored in the present paper through consistent evaluation of the evidence from a database of column tests which were subjected to cyclic lateral load reversals simulating earthquake effects after being subjected to accelerated corrosion. The column performance expressed in terms of the shear vs drift resistance envelope is introduced in the available methodologies of rapid assessment of reinforced concrete structures showcasing the limitations and uncertainties of the existing state of the art in the field of seismic assessment of existing structures.

Findings

Simple estimations as well as experimental observation show that the effect can be staggering, in terms of reduced deformation capacity, prevailing mode of failure and residual strength under seismic loading. It has been observed in the field that deterioration and ageing can reduce a well detailed structural component to behave as a poorly constructed one, by means of cover delamination, transverse and longitudinal bar area loss and steel embrittlement.

Originality/value

The amount of deterioration in the residual life of the component, in the face of a future seismic hazard, is fraught with uncertainty regarding the amount and intensity of material deprecation and the manner in which this may be considered in the logistics of the assessment process.

Details

International Journal of Structural Integrity, vol. 11 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 30 March 2023

Jie Zhou, Zeyao Li, Wanjun Tian and Jiawei Sun

This study purposes to study the influence of artificial freezing on the liquefaction characteristics of Nanjing sand, as well as its mechanism.

Abstract

Purpose

This study purposes to study the influence of artificial freezing on the liquefaction characteristics of Nanjing sand, as well as its mechanism.

Design/methodology/approach

was studied through dynamic triaxial tests by means of the GDS dynamic triaxial system on Nanjing sand extensively discovered in the middle and lower reaches of the Yangtze River under seismic load and metro train vibration load, respectively, and potential hazards of the two loads to the freezing construction of Nanjing sand were also identified in the tests.

Findings

The results show that under both seismic load and metro train vibration load, freeze-thaw cycles will significantly reduce the stiffness and liquefaction resistance of Nanjing sand, especially in the first freeze-thaw cycle; the more freeze-thaw cycles, the worse structural behaviors of silty-fine sand, and the easier to liquefy; freeze-thaw cycles will increase the sensitivity of Nanjing sand's dynamic pore pressure to dynamic load response; the lower the freezing temperature and the effective confining pressure, the worse the liquefaction resistance of Nanjing sand after freeze-thaw cycles; compared to the metro train vibration load, the seismic load in Nanjing is potentially less dangerous to freezing construction of Nanjing sand.

Originality/value

The research results are helpful to the construction of the artificial ground freezing of the subway crossing passage in the lower reaches of the Yangtze River and to ensure the construction safety of the subway tunnel and its crossing passage.

Details

Railway Sciences, vol. 2 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 7 December 2018

Haitao Wang, Jiayu Shen and Da Gao

Abutment damage in liquefied ground is an important form of seismic damage of bridge structure. This paper aims to further research the effect of beam restriction on seismic

Abstract

Purpose

Abutment damage in liquefied ground is an important form of seismic damage of bridge structure. This paper aims to further research the effect of beam restriction on seismic damage mode of abutment in liquefied ground.

Design/methodology/approach

Based on the investigation of the seismic damage of Shengli Bridge in Tangshan earthquake, the finite element software dynamic effective stress analysis for ground (UWLC) is used to simulate the seismic damage of Shengli Bridge, and the results were compared with the actual seismic damage results. Then, the influences of the horizontal binding force of the beam, the liquefaction layer thickness, the top weight of the abutment, the peak acceleration, the liquefaction layer buried depth and the type of the foundation soil on the abutment seismic damage model are studied.

Findings

The results show that numerical simulation results are consistent with the actual seismic damage, and it is feasible to use UWLC software to simulate seismic damage. The results show that the seismic failure mode of the gravity abutment in liquefied ground is slip–rotation coupling type, not single slip type or rotation type. The large deformation of abutment bottom layer, horizontal binding force of the beam and post-stage soil pressure are the main reasons for abutment rotation or even destruction.

Research limitations/implications

A series of basic assumptions are used in the calculation process in this paper. The gravity abutment is defined as the elastic body and neglects its local deformation. The soil layer is a homogeneous isotropic. The consolidation process and the drainage boundary problem are not considered in the calculation process. Therefore, the paper may have some limitations.

Originality/value

To further research the seismic damage mode and influencing factors of abutment in liquefied ground, in this paper, based on the investigation of the seismic damage of Shengli Bridge in Tangshan earthquake, the finite element software UWLC is used to simulate the seismic damage of Shengli Bridge, and the results were compared with the actual seismic damage results. The seismic damage mode and influencing factors of gravity abutment in liquefied ground have been studied.

Details

Journal of Engineering, Design and Technology, vol. 17 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 11 February 2021

Guichen Zhang, Heng Peng, Hongtao Zhang, Juzhen Tang and Yinghua Liu

The safety assessment of engineering structures under repeated variable dynamic loads such as seismic and wind loads can be considered as a dynamic shakedown problem. This paper…

Abstract

Purpose

The safety assessment of engineering structures under repeated variable dynamic loads such as seismic and wind loads can be considered as a dynamic shakedown problem. This paper aims to extend the stress compensation method (SCM) to perform lower bound dynamic shakedown analysis of engineering structures and a double-closed-loop iterative algorithm is proposed to solve the shakedown load.

Design/methodology/approach

The construction of the dynamic load vertexes is carried out to represent the loading domain of a structure under both dynamic and quasi-static load. The SCM is extended to perform lower bound dynamic shakedown analysis of engineering structures, which constructs the self-equilibrium stress field by a series of direct iteration computations. The self-equilibrium stress field is not only related to the amplitude of the repeated variable load but also related to its frequency. A novel double-closed-loop iterative algorithm is presented to calculate the dynamic shakedown load multiplier. The inner-loop iteration is to construct the self-equilibrated residual stress field based on the certain shakedown load multiplier. The outer-loop iteration is to update the dynamic shakedown load multiplier. With different combinations of dynamic load vertexes, a dynamic shakedown load domain could be obtained.

Findings

Three-dimensional examples are presented to verify the applicability and accuracy of the SCM in dynamic shakedown analysis. The example of cantilever beam under harmonic dynamic load with different frequency shows the validity of the dynamic load vertex construction method. The shakedown domain of the elbow structure varies with the frequency under the dynamic approach. When the frequency is around the resonance frequency of the structure, the area of shakedown domain would be significantly reduced.

Research limitations/implications

In this study, the dynamical response of structure is treated as perfect elastoplastic. The current analysis does not account for effects such as large deformation, stochastic external load and nonlinear vibration conditions which will inevitably be encountered and affect the load capacity.

Originality/value

This study provides a direct method for the dynamical shakedown analysis of engineering structures under repeated variable dynamic load.

Details

Engineering Computations, vol. 38 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 1992

Dorothy Tao and Patricia Ann Coty

Until the Loma Prieta earthquake of 17 October 1989, also known as the “World Series earthquake” or the “San Francisco earthquake,” many of us may have considered earthquakes a…

Abstract

Until the Loma Prieta earthquake of 17 October 1989, also known as the “World Series earthquake” or the “San Francisco earthquake,” many of us may have considered earthquakes a remote danger. But instantaneous television transmission from the interrupted World Series game and frightening images of the collapsed Cypress Viaduct and the burning Marina district transformed this incident from a distant disaster into a phenomenon that touched us all. The Loma Prieta earthquake was followed in December 1990 by the inaccurate but widely publicized New Madrid earthquake prediction. Despite its inaccuracy, this prediction alerted the public to the fact that the largest earthquake ever to have occurred in the United States occurred not in California or Alaska, but in Missouri, and that a large earthquake could occur there again. Americans are discovering that few places are immune to the possibility of an earthquake.

Details

Reference Services Review, vol. 20 no. 3
Type: Research Article
ISSN: 0090-7324

Article
Publication date: 6 June 2022

Huizhong Xiong, Shengtang Jiang, Yong Huang and Jian Zhang

In order to explore the damage probability of bridge engineering in the event of earthquake in the construction stages, the analysis method of seismic vulnerability in the…

Abstract

Purpose

In order to explore the damage probability of bridge engineering in the event of earthquake in the construction stages, the analysis method of seismic vulnerability in the construction stages is proposed in this paper.

Design/methodology/approach

Based on the joint simulation function of construction stage conditions and seismic response conditions of MIDAS/Civil finite element analysis software, combined with the method of IDA analysis and compared the relationship between demand and capacity.

Findings

The research shows that: (1) the average seismic loss in different construction stages varies greatly; (2) the seismic vulnerability varies greatly in different construction stages. The vulnerability of the bridge in stage 6 is determined by the longitudinal direction of bridge. Therefore, during the construction of the whole bridge, we should focus on strengthening the disaster and loss prevention strategy of earthquake insurance in the longitudinal direction of bridge. (3) The application of the secondary dead load mainly affects the fragilityin the longitudinal direction of bridge, but has little effect on the fragility in the transversal direction of bridge.

Originality/value

This paper is to explore the seismic vulnerability of a typical simply supported continuous bridge during the construction stages, and to trace the entire construction stage of a typical simply supported continuous bridge. According to the characteristics of the system transformation in the actual construction steps, demand-capacity ratios were established based on incremental dynamic analysis (IDA) and performance indicators of moment curvature and stability, and the seismic vulnerability research is carried out for the construction stages prone to earthquake damage. Furthermore, it provides a basis for seismic risk assessment of such bridges in different construction stages.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 13 June 2016

João Dias-Oliveira, H Rodrigues and Humberto Varum

When a numerous amount of buildings was built in reinforced concrete, in a period when the regulations did not have the design philosophy for the occurrence of earthquakes, it is…

Abstract

Purpose

When a numerous amount of buildings was built in reinforced concrete, in a period when the regulations did not have the design philosophy for the occurrence of earthquakes, it is of extreme importance to carry out full and effective structural assessments, specially considering and comparing bare frame and infilled structure. The paper aims to discuss these issues.

Design/methodology/approach

Among several possibilities to make the evaluation as, simplified, linear analysis and static non-linear analysis, the non-linear dynamic can provide the most accurate numerical behaviour compared to the real one. The time-history non-linear analyses are developed on the software SeismoStruct for different levels of intensity. Local verifications are then applied separately from both Eurocode and Italian Code.

Findings

The application of validated models for the analysis of real buildings allows a complete seismic assessment. The level of uncertainty increases integrating particularities regarding the infill masonry walls. The paper shows important global and local seismic safety for these complex typology of buildings.

Originality/value

A representative common concrete structure without seismic provisions is first analysed and discussed in terms of global behaviour, deformations and progression of forces. The case study structure is considered both as bare structure and with integrated infill panels. It is also discussed in a local level, about brittle and ductile mechanisms, and extra comparisons between different interpretations of different standards. The case study structure is considered both as bare structure and with integrated infill panels.

Details

Engineering Computations, vol. 33 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 1000