Search results

1 – 10 of 569
Article
Publication date: 31 December 2019

Sassan Eshghi and Mohammad Mahdi Maddah

Mid-rise steel moment-resisting frames (MRFs) with intermediate ductility are a major part of conventional residential buildings in Iran. According to Iranian seismic design…

Abstract

Purpose

Mid-rise steel moment-resisting frames (MRFs) with intermediate ductility are a major part of conventional residential buildings in Iran. According to Iranian seismic design codes, in this resisting system, considering the strong-column/weak-beam (SCWB) criterion is not mandatory. Where a metal deck ceiling system is used, the composite action of a concrete slab and steel beams could change the collapse mechanism of the structure, especially in the MRFs with intermediate ductility. The purpose of this paper is to investigate the influence of the composite action in the seismic collapse risk of this type of structures. Seismic collapse risk assessment can be carried out by using simplified pushover-based methods. In these methods, the cyclic deterioration of an equivalent single degree of freedom (ESDoF) system must be considered when the modified Ibarra–Medina–Krawinkler is used for nonlinear modeling of MRFs. Accordingly, a modified method is developed to use in simplified collapse risk assessment process. For these purposes, two mid-rise MRFs with intermediate ductility located in Tehran have been selected as case studies. The results confirm that the composite action is very effective in collapse risk value in the steel MRFs in which their SCWB ratio is less than 1. Moreover, the proposed approach of considering the cyclic deterioration of ESDoF systems increases the accuracy of the simplified collapse assessment approaches.

Design/methodology/approach

Identifying seismically vulnerable buildings to collapse requires using robust methods. These methods can be simplified based on pushover analysis methods. An attempt was made to apply one of these approaches for steel MRFs with intermediate ductility. In these frames, the composite action of a concrete slab and steel beams could change the collapse mechanism. Here, two MRFs were investigated in order to assess this effect on collapse risk value. This process was done by modifying the SPO2IDA method as a simplified collapse capacity evaluation approach by developing a relationship to consider the cyclic deterioration effects for the ESDoF systems.

Findings

The results showed that it is necessary to consider the slab effects in the analytical model in the collapse assessment process of MRFs with intermediate ductility, especially in the condition in which the SCWB ratios of the frame are less than 1. Furthermore, by utilizing the proposed method of considering the ESDoF cyclic deterioration, the error values of the SPO2IDA program were reduced significantly. Moreover, estimating the collapse risk parameters shows that the utilized simplified method presents suitable accuracy and could be an acceptable approach to collapse risk assessment of mid-rise steel MRFs.

Originality/value

The influence of the composite action in seismic collapse risk of MRFs with intermediate ductility is investigated. Also, a modified relationship is developed to consider the deterioration effects on the ESDoF parameters used in simplified collapse risk assessment process. Also, a framework is presented for utilized methodology.

Details

International Journal of Structural Integrity, vol. 11 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 26 September 2023

Reza Esmailzadeh-Shahri and Sassan Eshghi

Nonlinear dynamic analyses are employed for seismic collapse risk evaluation of existing steel moment frame buildings. The standards, such as ASCE 41-17, often define collapse

Abstract

Purpose

Nonlinear dynamic analyses are employed for seismic collapse risk evaluation of existing steel moment frame buildings. The standards, such as ASCE 41-17, often define collapse thresholds based on plastic deformations; however, the collapse process involves several factors, and plastic deformation is only one of them. An energy-based approach employs deformation and resistance responses simultaneously, so it can consider various factors such as excessive deformation, stiffness and resistance degradation, and low-cycle fatigue as cumulative damage for seismic assessment. In this paper, an efficient energy-based methodology is proposed to estimate the collapse threshold responses of steel moment frame buildings.

Design/methodology/approach

This methodology uses a new criterion based on the energy balance concept and computes the structural responses for different seismic hazard levels. Meanwhile, a pre-processing phase is introduced to find the records that lead to the collapse of buildings. Furthermore, the proposed methodology can detect failure-prone hinges with a straightforward probability-based definition.

Findings

The findings show that the proposed methodology can estimate reasonably accurate responses against the results of the past experiment on the collapse threshold. Based on past studies, ASCE 41-17 results differ from experimental results and are even overly conservative in some cases. The authors believe that the proposed methodology can improve it. In addition, the failure-prone hinges detected by the proposed methodology are similar to the predicted collapse mechanism of three mid-rise steel moment frame buildings.

Originality/value

In the proposed methodology, new definitions based on energy and probability are employed to find out the structural collapse threshold and failure-prone hinges. Also, comparing the proposed methodology results against the experimental outcomes shows that this methodology efficiently predicts the collapse threshold responses.

Details

International Journal of Structural Integrity, vol. 14 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 5 August 2019

Payam Asadi and Hosein Sourani

In the absence of random variables, random variables are generated by the Monte Carlo (MC) simulation method. There are some methods for generating fragility curves with fewer…

Abstract

Purpose

In the absence of random variables, random variables are generated by the Monte Carlo (MC) simulation method. There are some methods for generating fragility curves with fewer nonlinear analyses. However, the accuracy of these methods is not suitable for all performance levels and peak ground acceleration (PGA) range. This paper aims to present a method through the seismic improvement of the high-dimensional model representation method for generating fragility curves while taking advantage of fewer analyses by choosing the right border points.

Design/methodology/approach

In this method, the values of uncertain variables are selected based on the results of the initial analyses, the damage limit of each performance level or according to acceptable limits in the design code. In particular, PGAs are selected based on the general shape of the fragility curve for each performance limit. Also, polynomial response functions are estimated for each accelerogram. To evaluate the accuracy, fragility curves are estimated by different methods for a single degree of freedom system and a reinforced concrete frame.

Findings

The results indicated that the proposed method can not only reduce the computational cost but also has a higher accuracy than the other methods, compared with the MC baseline method.

Originality/value

The proposed response functions are more consistent with the actual values and are also congruent with each performance level to increase the accuracy of the fragility curves.

Article
Publication date: 27 April 2022

Nadia Talbi, Aghiles Nekmouche, Mohand Ould Ouali, Naceur-Eddine Hannachi and Mohammed Naboussi Farsi

This paper aims to model the performances of frames structures by comparing the predictions of ordinary control concrete (CC) and concretes reinforced by fibers. Two types of…

Abstract

Purpose

This paper aims to model the performances of frames structures by comparing the predictions of ordinary control concrete (CC) and concretes reinforced by fibers. Two types of steel fibers were used in this work, industrial steel fibers (ISF) and tire-reclaimed fibers obtained by cutting virgin steel tire-cord to 50 mm, noticed virgin steel fibers (VSF). In total, 3% of VSF are used. The results obtained in this paper clearly show the contribution of fibers in improving the global and local behavior of the frames structures. VSF gives the same or better overall behavior as the use of industrial fibers for the same percentage of fibers, with the advantage that VSF contributes to the protection of the environment and limit the wastage of steel.

Design/methodology/approach

This work was carried out using the commercial finite element code Abaqus/Explicit. The behavior of the different concretes used in this study was modeled by the concrete damage plasticity (CDP) constitutive law. The methodology adopted to complete this work consisted in identifying, by calibration of the available experimental results with the numerical predictions, the parameters of the corresponding CDP model for each of the concretes used in this work. To this end, the authors have successively identified the CDP parameters for the CC-V (control concrete used by Vecchio and Emara, 1992) used in frame structure (R + 1). Subsequently, the CDP parameters of the CC-T (control concrete used by Tlemat, 2004), the CVSF (concrete with virgin steel fibers) and the CISF-1 (concrete with industrial steel fibers type 1, ISF-1) are identified using the experimental results of beams under bending tests. Once the model parameters were determined for each concrete, the authors conducted a series of simulations to show the benefit of introducing claimed and industrial fibers in frame structure (R + 1) and (R + 2). This approach recommends the use of concrete reinforced with steel fibers, mainly 6% by mass of VSF and ISF-1, in place of ordinary concrete in new construction to increase the resistance of structures and contribute, if applicable, to the protection of the environment.

Findings

The main findings of this study can be summarized by: the strength and ductility of the frames structures made of concrete fiber are significantly increased. The use of tire-reclaimed steel fibers (VSF) gives the same or better overall behavior as the use of industrial fibers. In addition to their good mechanical contribution, the tire-reclaimed fibers contribute to the protection of the environment and limit the wastage of steel. The use of fibers reduces the cracking zones in concrete fiber frames structures. The usefulness of distinguishing the interstory displacement limits set by codes, in particular, uniform building code (UBC-97), for ordinary concretes and concrete reinforced with fibers is addressed.

Originality/value

The contribution of tire-reclaimed and industrial fibers on the strength and ductility of reinforced concrete-frames structures is addressed. The use of tire-reclaimed steel fibers gives the same or better overall behavior as the use of industrial fibers, the tire-reclaimed fibers having the advantage of contributing to the protection of the environment and limiting the wastage of steel. The paper also points to the usefulness of distinguishing the interstory displacement limits set by codes, in particular UBC-97, for ordinary concrete and concrete reinforced with fibers, in accordance to the predictions of the capacity curves.

Details

World Journal of Engineering, vol. 20 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 6 February 2017

Hadi Faghihmaleki, Elmira Khaksar Najafi and Ali Hooshmand Aini

The purpose of this paper is to present a probabilistic assessment and verify the effectiveness of seismic improvement schemes against earthquake, blast and progressive collapse

Abstract

Purpose

The purpose of this paper is to present a probabilistic assessment and verify the effectiveness of seismic improvement schemes against earthquake, blast and progressive collapse. The probabilistic analysis is performed by taking into account the uncertainties in loading such as planar configuration and amplitude of the blast loading. A standard Monte Carlo (MC) simulation method is employed to generate various concepts of the uncertain parameters within the problem. For a given concept, various local dynamic analyses are performed within a certain range of distance, in order to quantify and locate the damage induced by impact wave on structural elements. In the next step, a limit state analysis is performed in order to investigate whether a progressive collapse mechanism forms under the acting loads or not.

Design/methodology/approach

( | ) and ( | ) are blast fragility and seismic fragility, respectively; ( ) and ( ) are annual occurrence rate of earthquake and blast, respectively. The purpose of the current study is to calculate for the primary structure as well as the retrofitted structure. Annual occurrence rate of earthquake can be calculated by using probability seismic hazard analysis for the site of interest, where the structure is located. In this paper, blast fragility and seismic fragility are defined rather differently; in other words, seismic fragility is defined as the probability of structural collapse given a specified level of seismic intensity whereas blast fragility is defined as the probability of collapse given that a significant blast event takes place. Both blast and earthquake loading conditions involve the activation of energy dissipation mechanism and, as a consequence, both can be resisted employing ductility enhancing techniques, such as column wrapping or jacketing and steel bracing.

Findings

The current paper aims to present a probabilistic assessment of progressive collapse under blast and earthquake loads. Non-dependent and incompatible events are considered to obtain a general rate of collapse. Finally, probabilistic collapse rate was obtained for a moment frame before and after modifying with convergent steel brace (CBF). The purpose of doing so is to investigate whether seismic improvement schemes can reduce collapse risk of different critical events or not.

Originality/value

Objective of the present work is to present a methodology for calculating the annual risk of collapse for a civil structure subjected to both seismic and blast loads, using a bi-hazard approach. Given that a blast event takes place, the probability of progressive collapse is calculated using a MC simulation procedure. The simulation procedure implements an efficient non-linear limit state analysis, formulated and solved as a linear programming problem. The probability of collapse caused by an earthquake event can be calculated by integrating the seismic fragility of the structure and the seismic hazard for the site.

Details

International Journal of Structural Integrity, vol. 8 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 March 2011

H. Kit Miyamoto, Amir S.J. Gilani and Akira Wada

School buildings have suffered disproportionate damage during past and recent earthquakes. For example, during the 2008 Sichuan earthquake, many school buildings collapsed

Abstract

Purpose

School buildings have suffered disproportionate damage during past and recent earthquakes. For example, during the 2008 Sichuan earthquake, many school buildings collapsed, resulting in loss of life. School buildings in many other parts of the world are also susceptible to this type of widespread damage because of inadequate design, detailing, or poor construction quality. The purpose of this paper is to show how these fatal flaws can be mitigated prior to future catastrophe by using good engineering practice to retrofit vulnerable schools.

Design/methodology/approach

Conventional and innovative, cost‐effective, and reliable tools are available to prevent damage to schools. It is often necessary to examine a group of buildings or all structures in a locality and develop a comprehensive risk management plan for the vulnerable buildings. As an example, a comprehensive evaluation and retrofit project, under the auspices of the World Bank, is currently under way in Istanbul, Turkey, to address vulnerable school and hospital buildings as discussed in the paper. As part of this effort in Turkey, a guideline that relies on state‐of‐the‐art evaluation and retrofit methods has been developed to assist the local engineers.

Findings

Implementation of the program based on the uniform standards developed in the retrofit guidelines, has significantly reduced the seismic risk to schools in Istanbul.

Practical implications

The proposed evaluation and implementation technique can be utilized by governments worldwide to prevent further damage to key infrastructure and save millions of lives.

Originality/value

Innovative retrofits can be used to provide enhanced performance and provide seismic resiliency for cluster of school buildings.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 2 no. 1
Type: Research Article
ISSN: 1759-5908

Keywords

Article
Publication date: 16 April 2024

Chaofan Wang, Yanmin Jia and Xue Zhao

Prefabricated columns connected by grouted sleeves are increasingly used in practical projects. However, seismic fragility analyses of such structures are rarely conducted. Seismic

Abstract

Purpose

Prefabricated columns connected by grouted sleeves are increasingly used in practical projects. However, seismic fragility analyses of such structures are rarely conducted. Seismic fragility analysis has an important role in seismic hazard evaluation. In this paper, the seismic fragility of sleeve connected prefabricated column is analyzed.

Design/methodology/approach

A model for predicting the seismic demand on sleeve connected prefabricated columns has been created by incorporating engineering demand parameters (EDP) and probabilities of seismic failure. The incremental dynamics analysis (IDA) curve clusters of this type of column were obtained using finite element analysis. The seismic fragility curve is obtained by regression of Exponential and Logical Function Model.

Findings

The IDA curve cluster gradually increased the dispersion after a peak ground acceleration (PGA) of 0.3 g was reached. For both columns, the relative displacement of the top of the column significantly changed after reaching 50 mm. The seismic fragility of the prefabricated column with the sleeve placed in the cap (SPCA) was inadequate.

Originality/value

The sleeve was placed in the column to overcome the seismic fragility of prefabricated columns effectively. In practical engineering, it is advisable to utilize these columns in regions susceptible to earthquakes and characterized by high seismic intensity levels in order to mitigate the risk of structural damage resulting from ground motion.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 8 June 2015

Mohamad Naja and Hoda Baytiyeh

The purpose of this paper is to offer an assessment of seismic structural vulnerability of a sample of public schools using Lang survey questionnaire. The structural integrity of…

189

Abstract

Purpose

The purpose of this paper is to offer an assessment of seismic structural vulnerability of a sample of public schools using Lang survey questionnaire. The structural integrity of public schools in Lebanon is a source of deep concern due to their outdated design and deteriorated status, their apparent lack of compliance with seismic design regulations, the unknown status of their safety and stability, their substandard maintenance and their low construction quality. These schools have not undergone any strengthening improvements to enhance their load-carrying capacity or their resistance to earthquake activity.

Design/methodology/approach

This paper is based on survey questionnaire illustrating the seismic risk exposure of public schools in Lebanon. It offers an assessment of seismic structural vulnerability of a sample of public schools using Lang survey questionnaire. It stresses the needs of retrofitting of public school buildings to enhance their functional capacities against future destructive earthquakes.

Findings

The findings of the survey emphasize the seismic structural vulnerability of the majority of public schools in Lebanon and call for deeper assessment and investigation that involve government officials for strengthening and retrofitting of public school buildings as part of holistic disaster risk-reduction strategy to prevent the induced serious risk to children in the event of a devastating earthquake.

Originality/value

This article should alert school administrators, public leaders and government officials regarding the seismic threats and their subsequent effects on the structural safety of public school buildings in Lebanon. The assessment of seismic structural vulnerability has rarely been performed or even discussed in the Lebanese-related literature.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 6 no. 2
Type: Research Article
ISSN: 1759-5908

Keywords

Article
Publication date: 1 March 1992

Dorothy Tao and Patricia Ann Coty

Until the Loma Prieta earthquake of 17 October 1989, also known as the “World Series earthquake” or the “San Francisco earthquake,” many of us may have considered earthquakes a…

Abstract

Until the Loma Prieta earthquake of 17 October 1989, also known as the “World Series earthquake” or the “San Francisco earthquake,” many of us may have considered earthquakes a remote danger. But instantaneous television transmission from the interrupted World Series game and frightening images of the collapsed Cypress Viaduct and the burning Marina district transformed this incident from a distant disaster into a phenomenon that touched us all. The Loma Prieta earthquake was followed in December 1990 by the inaccurate but widely publicized New Madrid earthquake prediction. Despite its inaccuracy, this prediction alerted the public to the fact that the largest earthquake ever to have occurred in the United States occurred not in California or Alaska, but in Missouri, and that a large earthquake could occur there again. Americans are discovering that few places are immune to the possibility of an earthquake.

Details

Reference Services Review, vol. 20 no. 3
Type: Research Article
ISSN: 0090-7324

Article
Publication date: 4 November 2014

Temitope Egbelakin, Suzanne Wilkinson and Jason Ingham

The purpose of this paper is to examine why building owners are often reluctant to adopt adequate mitigation measures despite the vulnerability of their buildings to earthquake…

Abstract

Purpose

The purpose of this paper is to examine why building owners are often reluctant to adopt adequate mitigation measures despite the vulnerability of their buildings to earthquake disasters, by exploring the economic-related barriers to earthquake mitigation decisions.

Design/methodology/approach

A case study research method was adopted and interviews chosen as the method of data collection.

Findings

Critical economic-related impediments that inhibited seismic retrofitting of earthquake-prone buildings were revealed in this study. Economic-related barriers identified include perception about financial involvement in retrofitting, property market conditions, high insurance premiums and deductibles, and the high cost of retrofitting. The availability of financial incentives such as low interest loans, tax deductibles, the implementation of a risk-based insurance premium scale and promoting increased knowledge and awareness of seismic risks and mitigation measures in the property market place are likely to address the economic-related challenges faced by property owners when undertaking seismic retrofitting projects. The provision of financial incentives specifically for seismic retrofitting should be introduced in policy-implementation programme tailored to local governments’ level of risks exposure and available resources.

Practical implications

The recommendations provided in this study suggest strategies and answers to questions aimed at understanding the types of incentives that city councils and environmental hazard managers should focus on in their attempt to ensure that property owners actively participate in earthquake risk mitigation.

Originality/value

This paper adopts a holistic perspective for investigating earthquake risk mitigation by examining the opinions of the different stakeholders involved in seismic retrofit decisions.

Details

Structural Survey, vol. 32 no. 5
Type: Research Article
ISSN: 0263-080X

Keywords

1 – 10 of 569