Search results

1 – 6 of 6
Open Access
Article
Publication date: 15 June 2021

Md Mahdi Hj Abd Latif and Gabriel Y.V. Yong

The coast at Berakas in the Brunei-Muara district of Brunei Darussalam suffers from erosion caused by a combination of fluvial and marine processes. This paper investigates the…

Abstract

The coast at Berakas in the Brunei-Muara district of Brunei Darussalam suffers from erosion caused by a combination of fluvial and marine processes. This paper investigates the rate and pattern of erosion along a 1.8-km stretch of coast to compare the difference between the unprotected and protected sections. We used (i) image and spatial analysis and (ii) field geomorphology. The Digital Shoreline Analysis System (DSAS) in ArcGIS was used to compare the study area using two Google Earth images. The study found that the unprotected section had receded by 4.6 m between 2009 and 2019, while the protected section had advanced by 8.0 m over the same period; intense gullying and slumping of cliff continued at both sections. The detached headland breakwaters in the protected section were effective in stabilizing the coast. A concrete drain installed parallel to the cliff edge appears to be capable of intercepting storm runoff, but its effectiveness was undermined by lack of maintenance. We conclude that terrestrial-fluvial processes continue to erode coastal land and cause slumping of the cliff face at Berakas. However, coastal protection structures that curb the marine process could stabilize the coastline, even where sediment transport is active.

Details

Southeast Asia: A Multidisciplinary Journal, vol. 21 no. 1
Type: Research Article
ISSN: 1819-5091

Keywords

Open Access
Article
Publication date: 20 November 2020

Emmanuel Arhin, Raymond Webrah Kazapoe and Fulera Salami

The purpose of this study was to define and outline areas prone to disease causing elements by analyzing the spatial distribution and concentration of toxic and essential elements…

Abstract

Purpose

The purpose of this study was to define and outline areas prone to disease causing elements by analyzing the spatial distribution and concentration of toxic and essential elements in a section of the Voltaian sedimentary basin.

Design/methodology/approach

A total of 2,668 soil samples were analysed by the inductively coupled plasma mass spectrometry technique and were re-appraised by comparing with baseline values of elements accepted globally to be in soils. The concentrations of arsenic (As), chromium (Cr), iron (Fe) and magnesium (Mg) were evaluated. Factor analysis, hierarchical cluster analysis and principal component analysis multivariate techniques were used to identify the source patterns of the elements in the soils. The Getis-Ord Gi method was used to generate the optimised maps for these selected elements. These maps spatially defined and outlined high value clusters which imply potential pollution or areas with high background values (hotspots), whereas the low value clusters imply areas with low background values (cold-spots).

Findings

The multivariate analysis supports a dominant geogenic source of these heavy elements with obvious influences from variably metamorphosed mafic–ultramafic rocks known to have contributed to the deposition of sediments in the basin. The hotspots for As were located around Nalerigu and to the east of Nawchugu. A Cr hotspot was located to the east of Nawchugu with Cr cold-spots located within Nalerigu and Yunyuo. Fe hotspots were observed to the south of Nalerigu and the east of Nawchugu with Fe cold-spots around Yunyuo, Bongo-Da and Nagbo. The spatial maps demonstrated the presence of toxic and deficient areas of all the selected elements used in the investigation. Therefore, it suggested the likely health implications depending on the exposed elements, their pathways and recommended the usefulness of using the results displayed in the spatial maps to guide in devising appropriate remediation techniques.

Originality/value

This paper fulfils an identified need to study the distribution of elements and the possible effects it may have on the health and livelihoods of those residing in these areas.

Details

Ecofeminism and Climate Change, vol. 2 no. 1
Type: Research Article
ISSN: 2633-4062

Keywords

Open Access
Article
Publication date: 2 February 2023

Chiara Bertolin and Elena Sesana

The overall objective of this study is envisaged to provide decision makers with actionable insights and access to multi-risk maps for the most in-danger stave churches (SCs…

1190

Abstract

Purpose

The overall objective of this study is envisaged to provide decision makers with actionable insights and access to multi-risk maps for the most in-danger stave churches (SCs) among the existing 28 churches at high spatial resolution to better understand, reduce and mitigate single- and multi-risk. In addition, the present contribution aims to provide decision makers with some information to face the exacerbation of the risk caused by the expected climate change.

Design/methodology/approach

Material and data collection started with the consultation of the available literature related to: (1) SCs' conservation status, (2) available methodologies suitable in multi-hazard approach and (3) vulnerability leading indicators to consider when dealing with the impact of natural hazards specifically on immovable cultural heritage.

Findings

The paper contributes to a better understanding of place-based vulnerability with local mapping dimension also considering future threats posed by climate change. The results highlight the danger at which the SCs of Røldal, in case of floods, and of Ringebu, Torpo and Øye, in case of landslide, may face and stress the urgency of increasing awareness and preparedness on these potential hazards.

Originality/value

The contribution for the first time aims to homogeneously collect and report all together existing spread information on architectural features, conservation status and geographical attributes for the whole group of SCs by accompanying this information with as much as possible complete 2D sections collection from existing drawings and novel 3D drawn sketches created for this contribution. Then the paper contributes to a better understanding of place-based vulnerability with local mapping dimension also considering future threats posed by climate change. Then it highlights the danger of floods and landslides at which the 28 SCs are subjected. Finally it reports how these risks will change under the ongoing impact of climate change.

Details

International Journal of Building Pathology and Adaptation, vol. 42 no. 1
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 30 March 2023

Jie Zhou, Zeyao Li, Wanjun Tian and Jiawei Sun

This study purposes to study the influence of artificial freezing on the liquefaction characteristics of Nanjing sand, as well as its mechanism.

Abstract

Purpose

This study purposes to study the influence of artificial freezing on the liquefaction characteristics of Nanjing sand, as well as its mechanism.

Design/methodology/approach

was studied through dynamic triaxial tests by means of the GDS dynamic triaxial system on Nanjing sand extensively discovered in the middle and lower reaches of the Yangtze River under seismic load and metro train vibration load, respectively, and potential hazards of the two loads to the freezing construction of Nanjing sand were also identified in the tests.

Findings

The results show that under both seismic load and metro train vibration load, freeze-thaw cycles will significantly reduce the stiffness and liquefaction resistance of Nanjing sand, especially in the first freeze-thaw cycle; the more freeze-thaw cycles, the worse structural behaviors of silty-fine sand, and the easier to liquefy; freeze-thaw cycles will increase the sensitivity of Nanjing sand's dynamic pore pressure to dynamic load response; the lower the freezing temperature and the effective confining pressure, the worse the liquefaction resistance of Nanjing sand after freeze-thaw cycles; compared to the metro train vibration load, the seismic load in Nanjing is potentially less dangerous to freezing construction of Nanjing sand.

Originality/value

The research results are helpful to the construction of the artificial ground freezing of the subway crossing passage in the lower reaches of the Yangtze River and to ensure the construction safety of the subway tunnel and its crossing passage.

Details

Railway Sciences, vol. 2 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 25 January 2022

Nguyen Ngoc An, Huynh Song Nhut, Tran Anh Phuong, Vu Quang Huy, Nguyen Cao Hanh, Giang Thi Phuong Thao, Pham The Trinh, Pham Viet Hoa and Nguyễn An Bình

Groundwater plays a critical part in both natural and human existence. When surface water is scarce in arid climates, groundwater becomes an immensely valuable resource. Dak Lak…

Abstract

Purpose

Groundwater plays a critical part in both natural and human existence. When surface water is scarce in arid climates, groundwater becomes an immensely valuable resource. Dak Lak is an area that frequently lacks water resources for everyday living and production, and the scarcity of water resources is exacerbated during the dry season. As a result, it is critical to do study and understand about groundwater to meet the region's water demand. This study aims to extend the use of the MODFLOW model for groundwater simulation and assess the overall groundwater reserves and water demand in the highland province Dak Lak.

Design/methodology/approach

The MODFLOW model is used in this work to compute and analyze the flow, prospective reserves of groundwater from which to plan extraction and estimate groundwater variation in the future.

Findings

The application of the MODFLOW model to Dak Lak province demonstrates that, despite limited data, particularly drilling hole data for subterranean water research, the model's calculation results have demonstrated its reliability and great potential for use in other similar places. The use of the model in conjunction with other data extraction modules is a useful input for creating underground flow module maps for various time periods. The large impact of recharge and evaporation on groundwater supplies and water balance in the research area is demonstrated by simulations of climate change scenarios RCP4.5 and RCP8.5.

Originality/value

None of the studies has been done previously to analyze water resources of Dak Lak and the scarcity of water resources is exacerbated during the dry season. Therefore, this study will provide useful insights in the water resource management and the conservation of Dak Lak. The groundwater in Dak Lak can meet the area's water demand, according to the results obtained and water balance in the study area. However, the management of water resources and rigorous monitoring of groundwater extraction activities in the area should receive more attention.

Details

Frontiers in Engineering and Built Environment, vol. 2 no. 1
Type: Research Article
ISSN: 2634-2499

Keywords

Open Access
Article
Publication date: 23 February 2018

José Guilherme Moreira Simões Vieira, Joana Salgueiro, Amadeu Mortágua Velho da Maia Soares, Ulisses Azeiteiro and Fernando Morgado

The development of models that allows the evaluation and prediction of erosion processes is an important tool for the management and planning of coastal systems. Mangrove forests…

3211

Abstract

Purpose

The development of models that allows the evaluation and prediction of erosion processes is an important tool for the management and planning of coastal systems. Mangrove forests systems are under threat by the impacts of erosion, which is also intensified by human activity (and aggravated in the scenarios of global warming and climate change). The purpose of this paper is to develop a model of geographic information systems (GIS) that can be used for any estuary area, but it can also be used for mangroves.

Design/methodology/approach

This paper uses georeferentiation which is defined as a set of parameters that best characterize the mangrove areas: elevation (m); geomorphology; geology; land cover; anthropogenic activities; distance to the coastline (m) and maximum tidal range (m). Three different methods are used to combine the various vulnerability parameters, namely, DRASTIC index, analytical hierarchy process (AHP) and square root of the geometric mean.

Findings

The three approaches presented in this work show different types evaluating vulnerability to erosion, highlighting a stronger overvaluation of the areas presented with a high vulnerability, through the use of DRASTIC index when compared with two other approaches. The use of the AHP shows similarity to the square root of the geometric mean model, but the AHP also presents a higher percentage of vulnerable areas classified as having medium to very high vulnerability. On the other hand, the use of square root of the geometric mean led to a higher percentage of areas classified as having low and very low vulnerability.

Research limitations/implications

These three qualitative models, based on a cognitive approach, using the set of parameters defined in this research, are a good tool for the spatial distribution of erosion in different mangroves in the world.

Originality/value

Global warming and climate change scenarios require adaptation and mitigation options supported by science-based strategies and solutions.

Details

International Journal of Climate Change Strategies and Management, vol. 11 no. 2
Type: Research Article
ISSN: 1756-8692

Keywords

Access

Only content I have access to

Year

Content type

1 – 6 of 6