Search results

1 – 10 of 86
Open Access
Article
Publication date: 17 September 2021

Aykut Akgün and Mehmet Gülbahar

Bi-slant submanifolds of S-manifolds are introduced, and some examples of these submanifolds are presented.

Abstract

Purpose

Bi-slant submanifolds of S-manifolds are introduced, and some examples of these submanifolds are presented.

Design/methodology/approach

Some properties of Di-geodesic and Di-umbilical bi-slant submanifolds are examined.

Findings

The Riemannian curvature invariants of these submanifolds are computed, and some results are discussed with the help of these invariants.

Originality/value

The topic is original, and the manuscript has not been submitted to any other journal.

Details

Arab Journal of Mathematical Sciences, vol. 30 no. 1
Type: Research Article
ISSN: 1319-5166

Keywords

Open Access
Article
Publication date: 7 May 2021

H. Aruna Kumara, V. Venkatesha and Devaraja Mallesha Naik

Besse first conjectured that the solution of the critical point equation (CPE) must be Einstein. The CPE conjecture on some other types of Riemannian manifolds, for instance…

Abstract

Purpose

Besse first conjectured that the solution of the critical point equation (CPE) must be Einstein. The CPE conjecture on some other types of Riemannian manifolds, for instance, odd-dimensional Riemannian manifolds has considered by many geometers. Hence, it deserves special attention to consider the CPE on a certain class of almost contact metric manifolds. In this direction, the authors considered CPE on almost f-cosymplectic manifolds.

Design/methodology/approach

The paper opted the tensor calculus on manifolds to find the solution of the CPE.

Findings

In this paper, in particular, the authors obtained that a connected f-cosymplectic manifold satisfying CPE with \lambda=\tilde{f} is Einstein. Next, the authors find that a three dimensional almost f-cosymplectic manifold satisfying the CPE is either Einstein or its scalar curvature vanishes identically if its Ricci tensor is pseudo anti‐commuting.

Originality/value

The paper proved that the CPE conjecture is true for almost f-cosymplectic manifolds.

Details

Arab Journal of Mathematical Sciences, vol. 29 no. 2
Type: Research Article
ISSN: 1319-5166

Keywords

Article
Publication date: 28 March 2022

Adriana Gorea, Amy Dorie and Martha L. Hall

This study aims to investigate if engineered compression variations using moisture-responsive knitted fabric design can improve breast support in seamless knitted sports bras.

Abstract

Purpose

This study aims to investigate if engineered compression variations using moisture-responsive knitted fabric design can improve breast support in seamless knitted sports bras.

Design/methodology/approach

An experimental approach was used to integrate a novel moisture-responsive fabric panel into a seamless knitted bra, and the resulting compression variability in dry versus wet conditions were compared with those of a control bra. Air permeability and elongation testing of between breasts fabric panels was conducted in dry and wet conditions, followed by three-dimensional body scanning of eight human participants wearing the two bras in similar conditions. Questionnaires were used to evaluate perceived comfort and breast support of both bras in both conditions.

Findings

Air permeability test results showed that the novel panel had the highest variance between dry and wet conditions, confirming its moisture-responsive design, and increased its elongation coefficient in both wale and course directions in wet condition. There were significant main effects of bra type and body location on breast compression measurements. Breast circumferences in the novel bra were significantly larger than in the control bra condition. The significant two-way interaction between bra type and moisture condition showed that the control bra lost compressive power in wet condition, whereas the novel bra became more compressive when wet. Changes in compression were confirmed by participants’ perception of tighter straps and drier breast comfort.

Originality/value

These findings add to the limited scientific knowledge of moisture adaptive bra design using engineered knitted fabrics via advanced manufacturing technologies, with possible applications beyond sports bras, such as bras for breast surgery recovering patients.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 16 April 2024

Chaofan Wang, Yanmin Jia and Xue Zhao

Prefabricated columns connected by grouted sleeves are increasingly used in practical projects. However, seismic fragility analyses of such structures are rarely conducted…

Abstract

Purpose

Prefabricated columns connected by grouted sleeves are increasingly used in practical projects. However, seismic fragility analyses of such structures are rarely conducted. Seismic fragility analysis has an important role in seismic hazard evaluation. In this paper, the seismic fragility of sleeve connected prefabricated column is analyzed.

Design/methodology/approach

A model for predicting the seismic demand on sleeve connected prefabricated columns has been created by incorporating engineering demand parameters (EDP) and probabilities of seismic failure. The incremental dynamics analysis (IDA) curve clusters of this type of column were obtained using finite element analysis. The seismic fragility curve is obtained by regression of Exponential and Logical Function Model.

Findings

The IDA curve cluster gradually increased the dispersion after a peak ground acceleration (PGA) of 0.3 g was reached. For both columns, the relative displacement of the top of the column significantly changed after reaching 50 mm. The seismic fragility of the prefabricated column with the sleeve placed in the cap (SPCA) was inadequate.

Originality/value

The sleeve was placed in the column to overcome the seismic fragility of prefabricated columns effectively. In practical engineering, it is advisable to utilize these columns in regions susceptible to earthquakes and characterized by high seismic intensity levels in order to mitigate the risk of structural damage resulting from ground motion.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 17 November 2023

Jinyu Zhang, Danni Shen, Yuxiang Yu, Defu Bao, Chao Li and Jiapei Qin

This study aims to develop a four-dimensional (4D) textile composite that self-forms upon thermal stimulation while eliminating thermomechanical programming steps by using fused…

Abstract

Purpose

This study aims to develop a four-dimensional (4D) textile composite that self-forms upon thermal stimulation while eliminating thermomechanical programming steps by using fused deposition modeling (FDM) 3D printing technology, and tries to refine the product development path for this composite.

Design/methodology/approach

Polylactic acid (PLA) printing filaments were deposited on prestretched Lycra-knitted fabric using desktop-level FDM 3D printing technology to construct a three-layer structure of thermally responsive 4D textiles. Subsequently, the effects of different PLA thicknesses and Lycra knit fabric relative elongation on the permanent shape of thermally responsive 4D textiles were studied. Finally, a simulation program was written, and a case in this study demonstrates the usage of thermally responsive 4D textiles and the simulation program to design a wrist support product.

Findings

The constructed three-layer structure of PLA and Lycra knitted fabric can self-form under thermal stimulation. The material can also achieve reversible transformation between a permanent shape and multiple temporary shapes. Thinner PLA deposition and higher relative elongation of the Lycra-knitted fabric result in the greater curvature of the permanent shape of the thermally responsive 4D textile. The simulation program accurately predicted the permanent form of multiple basic shapes.

Originality/value

The proposed method enables 4D textiles to directly self-form upon thermal, which helps to improve the manufacturing efficiency of 4D textiles. The thermal responsiveness of the composite also contributes to building an intelligent human–material–environment interaction system.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 December 2021

Malika Belhocine, Youcef Bouafia, Mohand Said Kachi and Karim Benyahi

The calculation and design of the structures are carried out with the aim of obtaining a sufficiently ductile behavior to allow the structure to undergo displacements, without…

Abstract

Purpose

The calculation and design of the structures are carried out with the aim of obtaining a sufficiently ductile behavior to allow the structure to undergo displacements, without risk of sudden breaks or loss of stability. The purpose of this study is to develop and validate a computer program (Thin beam2), allowing the modeling and simulation of the nonlinear behavior of reinforced concrete elements, on the other part, it is estimating the local and global ductility of the sections or elements constituting these structures.

Design/methodology/approach

The authors present two nonlinear analysis methods to carry out a parametric study of the factors influencing the local and global ductility of reinforced concrete structures. The first consists in evaluating the nonlinear behavior at the level of the cross-section of the reinforced concrete elements used in the elaborate Sectenol 1 program, it allows us to have the local ductility. The second, allows us to evaluate the nonlinear behavior of the element used in the modified thin beam 2 program, it allows us to estimate the overall ductility of the element.

Findings

The validation results of the Thin beam2 program are very satisfactory, by conferring the analytic and experimental results obtained by various researchers and the parametric study shows that each factor such as the compressive strength of the concrete has a favorable effect on ductility. Conversely, the normal compression force and the high resistance of tensioned reinforcements adversely affect ductility.

Originality/value

The reliability of the two programs lies in obtaining the local and global ductility of reinforced concrete structures because the calculation and design of the structures are carried out with the aim of obtaining ductile behavior without risk of breakage and instability.

Details

World Journal of Engineering, vol. 20 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 9 November 2023

Jeff Foster, Thomas Stone, I.M. Jawahar, Brigitte Steinheider and Truit W. Gray

The authors introduce a new construct, reputational self-awareness (RSA). RSA represents the congruence between how individuals think they are viewed by others (i.e…

Abstract

Purpose

The authors introduce a new construct, reputational self-awareness (RSA). RSA represents the congruence between how individuals think they are viewed by others (i.e. metaperceptions) versus how they are actually viewed (i.e. other ratings). The authors sought to demonstrate that RSA is a superior predictor of performance indices.

Design/methodology/approach

Personality self-ratings from 381 business students and their ratings by 966 others were collected via online surveys. Other raters rated self-raters' personalities as well as their task performance, organizational citizenship behaviors (OCBs) and counterproductive work behaviors (CWBs).

Findings

Results indicate that RSA predicts variance in performance above and beyond self-report ratings, and performance is highest when metaperceptions and other ratings of performance are aligned. These results support the use of a multi-perspective approach to personality assessment as a useful tool for coaching and career development.

Research limitations/implications

The authors' results support the use of a multi-perspective approach to personality assessment as a useful tool for coaching and career development. A cross-sectional design was used in which personality and performance data were gathered from respondents, and the P 720 is a relatively new personality instrument.

Practical implications

RSA is a valuable tool for employee development, coaching and counseling because, as extant research and the authors' findings demonstrate, awareness of how others view and judge one, one's reputation is essential information to guide work behaviors and career success. Therefore, a key career-development goal for trainers and counselors should be to use a multi-perspective approach to maximize clients' RSA.

Social implications

Use of other ratings as opposed to traditional self-rating of personality provides superior prediction of behavior and is more useful for career development.

Originality/value

This is the first study to demonstrate utility of RSA, i.e. that individuals who more accurately assess their personality are rated as performing better by others. The authors' results offer new insights for personality research and career development and support the use of personality assessment from multiple perspectives, thus enabling the exploration of potentially insightful research questions that cannot be examined by assessing personality from a single perspective.

Details

Career Development International, vol. 28 no. 6/7
Type: Research Article
ISSN: 1362-0436

Keywords

Article
Publication date: 20 February 2023

Guodong Qin, Qi Wang, Changyang Li, Aihong Ji, Huapeng Wu, Zhikang Yang and Shikun Wen

In large equipment and highly complex confined workspaces, the maintenance is usually carried out by snake-arm robots with equal cross-sections. However, the equal cross-sectional…

270

Abstract

Purpose

In large equipment and highly complex confined workspaces, the maintenance is usually carried out by snake-arm robots with equal cross-sections. However, the equal cross-sectional design results in the snake arm suffering from stress concentration and restricted working space. The purpose of this paper is to design a variable cross-section elephant trunk robot (ETR) that can address these shortcomings through bionic principles.

Design/methodology/approach

This paper proposes a cable-driven ETR to explore the advantages and inspiration of variable cross-section features for hyper-redundant robot design. For the kinematic characteristics, the influence of the variable cross-section design on the maximum joint angle of the ETR is analysed using the control variables method and the structural parameters are selected. Based on the biological inspiration of the whole elephant trunk following the movement of the trunk tip, a trajectory-tracking algorithm is designed to solve the inverse kinematics of the ETR.

Findings

Simulation and test results show the unique advantages of the proposed variable cross-section ETR in kinematics and forces, which can reduce stress concentrations and increase the flexibility of movement.

Originality/value

This paper presents a design method for a variable cross-section ETR for confined working spaces, analyses the kinematic characteristics and develops a targeted trajectory control algorithm.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 11 July 2022

Xiaomin Zhao, Fuminobu Ozaki, Takeo Hirashima, Kei Kimura, Yukio Murakami, Jun-ichi Suzuki and Naoya Yotsumoto

The main purpose of this study was to propose theoretical calculation models to evaluate the theoretical bending strengths of welded wide-flange section steel beams with local…

Abstract

Purpose

The main purpose of this study was to propose theoretical calculation models to evaluate the theoretical bending strengths of welded wide-flange section steel beams with local buckling at elevated temperatures.

Design/methodology/approach

Steady-state tests using various test parameters, including width-thickness ratios (Class 2–4) and specimen temperatures (ambient temperature, 400, 500, 600, 700, and 800°C), were performed on 18 steel beam specimens using roller supports to examine the maximum bending moment and bending strength after local buckling. A detailed calculation model (DCM) based on the equilibrium of the axial force in the cross-section and a simple calculation model (SCM) for a practical fire-resistant design were proposed. The validity of the calculation models was verified using the bending test results.

Findings

The strain concentration at the local buckling cross-section was mitigated in the elevated-temperature region, resulting in a small bending moment degradation after local buckling. The theoretical bending strengths after local buckling, evaluated from the calculation models, were in good agreement with the test results at elevated temperatures.

Originality/value

The effect of local buckling on the bending behaviour after the maximum bending strength in high-temperature regions was quantified. Two types of calculation models were proposed to evaluate the theoretical bending strength after local buckling.

Details

Journal of Structural Fire Engineering, vol. 14 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 23 October 2023

Kaiyi Xu, Songling Zhao, Jian Zhang and Bingfei Gu

This study focused on how to quantify the similarities of body shape based on the front and side images, and a shape comprehensive index (ISC) of female upper body shape based on…

57

Abstract

Purpose

This study focused on how to quantify the similarities of body shape based on the front and side images, and a shape comprehensive index (ISC) of female upper body shape based on 2D images was proposed.

Design/methodology/approach

In total, 190 young women were shot for front and side images, and 18 shape parameters were automatically extracted, including seven angles and 11 ratio parameters. The coefficient of variation method was used to assign different weights for related parameters, and the ISC was calculated to describe the body shape of each subject. Five cross-sectional curves of the upper body (e.g. shoulder, chest, waist, abdomen and hip) were selected for exploring the range of shape similarity.

Findings

According to the value of ISC, if the difference among the subjects is within the range of ±0.02, their body shapes can be regarded as similar, and the subject with the minimum distance is considered as the most similar. Error results show that the error range of the angle parameter is from 0.2° to 3.6° and the ratio range is from 0.001 to 0.119. Moreover, the t-test value among the parameters of the similar body is above 0.05, indicating that there is no significant difference for the upper body shape of the similar groups.

Originality/value

This method can quantify body shapes with the upper body characteristics of young women instead of subjective judgment. The study can be extended to other parts of the body and can also provide a new thought for shape similarity retrieval based on 2D images.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 86