Search results

1 – 10 of 269
Article
Publication date: 3 April 2024

Shiang-Wuu Perng, Horng Wen Wu and De-An Huang

The purpose of this study is to advance turbulent thermal convection inside the constant heat-flux round tube inserted by multiple perforated twisted tapes.

Abstract

Purpose

The purpose of this study is to advance turbulent thermal convection inside the constant heat-flux round tube inserted by multiple perforated twisted tapes.

Design/methodology/approach

The novel design of this study is accomplished by inserting several twisted tapes and drilling some circular perforations near the tape edge (C1, C3, C5: solid tapes; C2, C4, C6: perforated tapes). The turbulence flow appearances and thermal convective features are examined for various Reynolds numbers (8,000–14,000) using the renormalization group (RNG) κε turbulent model and Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm.

Findings

The simulated outcomes reveal that inserting more perforated-twisted tapes into the heated round tube promotes turbulent thermal convection effectively. A swirling flow caused by the twisted tapes to produce the secondary flow jets between two reverse-spin tapes can combine with the main flow passing through the perforations at the outer edge to enhance the vortex flow. The primary factors are the quantity of twisted tapes and with/without perforations, as the perforation ratio remains at 2.5 in this numerical work. Weighing friction along the tube, C6 (four reverse-spin perforated-twisted tapes) brings the uppermost thermal-hydraulic performance of 1.23 under Re = 8,000.

Research limitations/implications

The constant thermo-hydraulic attributes of liquid water and the steady Newtonian fluid are research limitations for this simulated work.

Practical implications

The simulated outcomes will avail the inner-pipe design of a heat exchanger inserted by multiple perforated twisted tapes to enhance superior heat transfer.

Originality/value

These twisted tapes form tiny circular perforations along the tape edge to introduce the fluid flow through these bores and combine with the secondary flow induced between two reverse-spin tapes. This scheme enhances the swirling flow, turbulence intensity and fluid mixing to advance thermal convection since larger perforations cannot produce large jet velocity or the position of perforations is too far from the tape edge to generate a separated flow. Consequently, this work contributes a valuable cooling mechanism toward thermal engineering.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 July 2023

Rui Nie, Yaqian Meng, Peixin Wang, Peng Su and Jikai Si

The purpose of this study is to calculate the normal force of a two degree of freedom direct drive induction motor considering coupling effects based on an analytical model…

Abstract

Purpose

The purpose of this study is to calculate the normal force of a two degree of freedom direct drive induction motor considering coupling effects based on an analytical model. Compared with the traditional single degree of freedom motor, normal force characteristics of two-degree-of-freedom direct drive induction motor (2DOFDDIM) is affected by coupling effect when the machine is in a helical motion. To theoretically explain the influence mechanism of coupling effect, this paper conducts a quantitative analysis of the influence of coupling effect on normal force based on the established analytical model of normal force considering coupling effect.

Design/methodology/approach

Firstly, the normal forces generated by 2DOFDDIM in linear motion, rotary motion and helical motion are investigated and compared to prove the effect of the coupling effect on the normal force. During this study, several coupling factors are established to modify the calculation equations of the normal force. Then, based on the multilayer theoretical method and Maxwell stress method, a novel normal force calculation model of 2DOFDDIM is established taking the coupling effect into account, which can easily calculate the normal force of 2DOFDDIM under different motions conditions. Finally, the calculation results are verified by the results of 3D finite element model, which proves the correctness of the established calculating model.

Findings

The coupling effect produced by the helical motion of 2DOFDDIM affects the normal force.

Originality/value

In this paper, the analytical model of the normal force of 2DOFDDIM considering the coupling effect is established, which provides a fast calculation for the design of the motor.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 14 December 2021

Mohammad Reza Khalilnezhad and Dak Kopec

This study aims to assess each of the seven segments of the Akbarieh Garden as the World Heritage Cultural Landscape. First, we wanted to identify the macro elements that…

Abstract

Purpose

This study aims to assess each of the seven segments of the Akbarieh Garden as the World Heritage Cultural Landscape. First, we wanted to identify the macro elements that dominated one's perception within each area. Then, we wanted to identify the micro elements that support the vista in its entirety.

Design/methodology/approach

To acquire data, we used a Participant Observer (PO) method as part of a Continuous/Stop-Motion (CSM) procedure. The identification of macro elements came from retrospective recollections derived from the continuous walk method—the stop-walk method allowed for the identification of micro elements. The data gained from this method is then used to understand how one interprets and responds to large—multi-segmented sites such as the Akbarieh Garden.

Findings

The results of this study show the Continuous/Stop-Motion method yielded predictable results with macro elements and elements of interest being easily recalled. However, the use of photographing for the stop-walk method revealed a similar focus on the macro element. We had hypothesized that the micro elements would be the elements of fascination and discovered when the person remained in the area to photograph scenes of interest. However, the PO photographed the macro elements. It wasn't until the post photo analysis that the PO identified some of the micro elements would be the elements of fascination and discovered when the person remained in the area to photograph scenes of interest. However, the PO photographed the macro elements. It wasn't until the post photo analysis that the PO identified some of the micro elements. The post photo discoveries suggest that real-time experience of micro elements is undervalued.

Originality/value

There is no general discussion on this topic yet amongst professionals. The initiative of the Participant Observer (PO) method as a tool for perception the historic gardens and landscapes identified that gap and its related necessity to provide guidance. As is true for exploratory studies, these results provide a foundation for further study. The use of the Continuous/Stop-Motion method was ideal for this study.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. 13 no. 4
Type: Research Article
ISSN: 2044-1266

Keywords

Open Access
Article
Publication date: 25 April 2023

Maria Cleofe Giorgino

This paper aims to inform the discussion on why and how non-profit organizations can experience a hybridization process to address the criticism that would assume hybridity as an…

Abstract

Purpose

This paper aims to inform the discussion on why and how non-profit organizations can experience a hybridization process to address the criticism that would assume hybridity as an intrinsic characteristic of all organizations. Specifically, by referring to the academies of intellectuals as the non-profit setting in which investigating the emergence of hybridity takes place, this paper aims at exploring, first, to what extent this emergence could be induced by institutional conditions, and, second, which structural innovations could sustain the academies’ “motion” towards hybridity.

Design/methodology/approach

This paper relies on the institutional logics perspective and adopts the case study method applied to a historical context. The case under analysis is the Academy of “the Immobili”, which, in spite of its name, experienced a hybridization process in 1720 because of the decision to involve an impresario in the management of its theatre.

Findings

The findings highlight the significant role played by institutional conditions in inducing the emergence of hybridity, even in presence of internal resistance to any “motion” from the non-profit setting. Moreover, the analysis of the innovations associated with this emergence detects the intertwined action of the different decision makers involved in the hybridization process, in spite of their formal separation. These findings strengthen the conceptualization of hybridity within non-profit organizations.

Originality/value

Besides referring to a historical period that is still little explored in terms of hybridity within organizations, the paper focuses on an original context, i.e. academies, representing an ancient typology of cultural organizations. Therefore, the paper also provides the first insights into the hybridization process of cultural organizations from a historical perspective.

Details

Journal of Management History, vol. 30 no. 1
Type: Research Article
ISSN: 1751-1348

Keywords

Article
Publication date: 27 February 2024

Jacques Abou Khalil, César Jiménez Navarro, Rami El Jeaid, Abderahmane Marouf, Rajaa El Akoury, Yannick Hoarau, Jean-François Rouchon and Marianna Braza

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to…

Abstract

Purpose

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to modify the upstream shock–boundary layer interaction (SBLI) around an A320 morphing prototype to control these instabilities, with emphasis to the attenuation or even suppression of the transonic buffet. The modification of the aerodynamic performances according to a large parametric study carried out at Reynolds number of 4.5 × 106, Mach number of 0.78 and various angles of attack in the range of (0, 2.4)° according to two morphing concepts (travelling waves and trailing edge vibration) are discussed, and the final benefits in aerodynamic performance increase are evaluated.

Design/methodology/approach

This article examines through high fidelity (Hi-Fi) numerical simulation the effects of the trailing edge (TE) actuation and of travelling waves along a specific area of the suction side starting from practically the most downstream position of the shock wave motion according to the buffet and extending up to nearly the TE. The present paper studies through spectral analysis the coherent structures development in the near wake and the comparison of the aerodynamic forces to the non-actuated case. Thus, the physical mechanisms of the morphing leading to the increase of the lift-to-drag ratio and the drag and noise sources reduction are identified.

Findings

This study investigates the influence of shear-layer and near-wake vortices on the SBLI around an A320 aerofoil and attenuation of the related instabilities thanks to novel morphing: travelling waves generated along the suction side and trailing-edge vibration. A drag reduction of 14% and a lift-to-drag increase in the order of 8% are obtained. The morphing has shown a lift increase in the range of (1.8, 2.5)% for angle of attack of 1.8° and 2.4°, where a significant lift increase of 7.7% is obtained for the angle of incidence of 0° with a drag reduction of 3.66% yielding an aerodynamic efficiency of 11.8%.

Originality/value

This paper presents results of morphing A320 aerofoil, with a chord of 70cm and subjected to two actuation kinds, original in the state of the art at M = 0.78 and Re = 4.5 million. These Hi-Fi simulations are rather rare; a majority of existing ones concern smaller dimensions. This study showed for the first time a modified buffet mode, displaying periodic high-lift “plateaus” interspersed by shorter lift-decrease intervals. Through trailing-edge vibration, this pattern is modified towards a sinusoidal-like buffet, with a considerable amplitude decrease. Lock-in of buffet frequency to the actuation is obtained, leading to this amplitude reduction and a drastic aerodynamic performance increase.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 September 2023

Xinyu Zhang and Liling Ge

A multi-laser sensors-based measurement instrument is proposed for the measurement of geometry errors of a differential body and quality evaluation. This paper aims to discuss the…

Abstract

Purpose

A multi-laser sensors-based measurement instrument is proposed for the measurement of geometry errors of a differential body and quality evaluation. This paper aims to discuss the aforementioned idea.

Design/methodology/approach

First, the differential body is set on a rotation platform before measuring. Then one laser sensor called as “primary sensor”, is installed on the intern of the differential body. The spherical surface and four holes on the differential body are sampled by the primary sensor when the rotation platform rotates one revolution. Another sensor called as “secondary sensor”, is installed above to sample the external cylinder surface and the planar surface on the top of the differential body, and the external cylinder surface and the planar surface are high in manufacturing precision, which are used as datum surfaces to compute the errors caused by the motion of the rotation platform. Finally, the sampled points from the primary sensor are compensated to improve the measurement accuracy.

Findings

A multi-laser sensors-based measurement instrument is proposed for the measurement of geometry errors of a differential body. Based on the characteristics of the measurement data, a gradient image-based method is proposed to distinguish different objects from laser measurement data. A case study is presented to validate the measurement principle and data processing approach.

Research limitations/implications

The study investigates the possibility of correction of sensor data by the measurement results of multiple sensors to improving measurement accuracy. The proposed technique enables the error analysis and compensation by the geometric correlation relationship of various features on the measurand.

Originality/value

The proposed error compensation principle by using multiple sensors proved to be useful for the design of new measurement device for special part inspection. The proposed approach to describe the measuring data by image also is proved to be useful to simplify the measurement data processing.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 March 2024

Ziming Zhou, Fengnian Zhao and David Hung

Higher energy conversion efficiency of internal combustion engine can be achieved with optimal control of unsteady in-cylinder flow fields inside a direct-injection (DI) engine…

Abstract

Purpose

Higher energy conversion efficiency of internal combustion engine can be achieved with optimal control of unsteady in-cylinder flow fields inside a direct-injection (DI) engine. However, it remains a daunting task to predict the nonlinear and transient in-cylinder flow motion because they are highly complex which change both in space and time. Recently, machine learning methods have demonstrated great promises to infer relatively simple temporal flow field development. This paper aims to feature a physics-guided machine learning approach to realize high accuracy and generalization prediction for complex swirl-induced flow field motions.

Design/methodology/approach

To achieve high-fidelity time-series prediction of unsteady engine flow fields, this work features an automated machine learning framework with the following objectives: (1) The spatiotemporal physical constraint of the flow field structure is transferred to machine learning structure. (2) The ML inputs and targets are efficiently designed that ensure high model convergence with limited sets of experiments. (3) The prediction results are optimized by ensemble learning mechanism within the automated machine learning framework.

Findings

The proposed data-driven framework is proven effective in different time periods and different extent of unsteadiness of the flow dynamics, and the predicted flow fields are highly similar to the target field under various complex flow patterns. Among the described framework designs, the utilization of spatial flow field structure is the featured improvement to the time-series flow field prediction process.

Originality/value

The proposed flow field prediction framework could be generalized to different crank angle periods, cycles and swirl ratio conditions, which could greatly promote real-time flow control and reduce experiments on in-cylinder flow field measurement and diagnostics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 February 2024

Karthikeyan Paramanandam, Venkatachalapathy S, Balamurugan Srinivasan and Nanda Kishore P V R

This study aims to minimize the pressure drop across wavy microchannels using secondary branches without compromising its capacity to transfer the heat. The impact of secondary…

Abstract

Purpose

This study aims to minimize the pressure drop across wavy microchannels using secondary branches without compromising its capacity to transfer the heat. The impact of secondary flows on the pressure drop and heat transfer capabilities at different Reynolds numbers are investigated numerically for different wavy microchannels. Finally, different channels are evaluated using performance evaluation criteria to determine their effectiveness.

Design/methodology/approach

To investigate the flow and heat transfer capabilities in wavy microchannels having secondary branches, a 3D conjugate heat transfer model based on finite volume method is used. In conventional wavy microchannel, secondary branches are introduced at crest and trough locations. For the numerical simulation, a single symmetrical channel is used to minimize computational time and resources and the flow within the channels remains single-phase and laminar.

Findings

The findings indicate that the suggested secondary channels notably improve heat transfer and decrease pressure drop within the channels. At lower flow rates, the secondary channels demonstrate superior performance in terms of heat transfer. However, the performance declines as the flow rate increased. With the same amplitude and wavelength, the introduction of secondary channels reduces the pressure drop compared with conventional wavy channels. Due to the presence of secondary channels, the flow splits from the main channel, and part of the core flow gets diverted into the secondary channel as the flow takes the path of minimum resistance. Due to this flow split, the core velocity is reduced. An increase in flow area helps in reducing pressure drop.

Practical implications

Many complex and intricate microchannels are proposed by the researchers to augment heat dissipation. There are challenges in the fabrication of microchannels, such as surface finish and achieving the required dimensions. However, due to the recent developments in metal additive manufacturing and microfabrication techniques, the complex shapes proposed in this paper are feasible to fabricate.

Originality/value

Wavy channels are widely used in heat transfer and micro-fluidics applications. The proposed wavy microchannels with secondary channels are different when compared to conventional wavy channels and can be used practically to solve thermal challenges. They help achieve a lower pressure drop in wavy microchannels without compromising heat transfer performance.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Case study
Publication date: 15 December 2023

Minnette A. Bumpus

The case was developed from secondary sources. This descriptive case was classroom tested in undergraduate organizational behavior courses.

Abstract

Research methodology

The case was developed from secondary sources. This descriptive case was classroom tested in undergraduate organizational behavior courses.

Case overview/synopsis

The 94th Academy Awards ceremony, which honored movies released in 2021, was held on March 27, 2022, at the Dolby Theater in Hollywood. Prior to Chris Rock announcing the winner in the category of best documentary film, Rock was assaulted on stage by Will Smith. On April 8, 2022, the Academy’s board of governors met to discuss disciplinary actions for Smith’s behavior. The Academy’s board decided to ban Smith from all Academy events for the next 10 years. Theories of individual behaviors and social processes can provide explanations for behaviors of Chris Rock, Will Smith, the producers and the Academy.

Complexity academic level

This descriptive case is most appropriate for undergraduate-level organizational behavior courses. The primary topics in this case align well with individual behaviors relative to emotional intelligence (EI) and motivation. The secondary topics in this case align well with social processes relative to decision-making, conflict and culture.

Details

The CASE Journal, vol. ahead-of-print no. ahead-of-print
Type: Case Study
ISSN: 1544-9106

Keywords

1 – 10 of 269