Search results

1 – 10 of 180
Article
Publication date: 19 January 2024

Mohamed Marzouk and Mohamed Zaher

Facility management gained profound importance due to the increasing complexity of different systems and the cost of operation and maintenance. However, due to the increasing…

56

Abstract

Purpose

Facility management gained profound importance due to the increasing complexity of different systems and the cost of operation and maintenance. However, due to the increasing complexity of different systems, facility managers may suffer from a lack of information. The purpose of this paper is to propose a new facility management approach that links segmented assets to the vital data required for managing facilities.

Design/methodology/approach

Automatic point cloud segmentation is one of the most crucial processes required for modelling building facilities. In this research, laser scanning is used for point cloud acquisition. The research utilises region growing algorithm, colour-based region-growing algorithm and Euclidean cluster algorithm.

Findings

A case study is worked out to test the accuracy of the considered point cloud segmentation algorithms utilising metrics precision, recall and F-score. The results indicate that Euclidean cluster extraction and region growing algorithm revealed high accuracy for segmentation.

Originality/value

The research presents a comparative approach for selecting the most appropriate segmentation approach required for accurate modelling. As such, the segmented assets can be linked easily with the data required for facility management.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 14 February 2024

Parsa Aghaei and Sara Bayramzadeh

This study aims to investigate how trauma team members perceive technological equipment and tools in the trauma room (TR) environment and to identify how the technological…

Abstract

Purpose

This study aims to investigate how trauma team members perceive technological equipment and tools in the trauma room (TR) environment and to identify how the technological equipment could be optimized in relation to the TR’s space.

Design/methodology/approach

A total of 21 focus group sessions were conducted with 69 trauma team members, all of whom worked in Level I TRs from six teaching hospitals in the USA.

Findings

The collected data was analyzed and categorized into three parent themes: imaging equipment, assistive devices and room features. The results of the study suggest that trauma team members place high importance on the availability and versatility of the technological equipment in the TR environment. Although CT scans are a usual procedure necessity in TRs, few facilities were optimized for easy access to CT-scanners for the TR. The implementation of cameras and screens was suggested as an improvement to accommodate situational awareness. Rapid sharing of data, such as imaging results, was highly sought after. Unorthodox approaches, such as the use of automatic doors, were associated with slowing down the course of actions.

Practical implications

This study provides health-care designers with the knowledge they need to make informed decisions when designing TRs. It will cover key considerations such as room layout, equipment selection, lighting and controls. Implementing the strategies will help minimize negative patient outcomes.

Originality/value

Level I TRs are a critical element of emergency departments and designing them correctly can significantly impact patient outcomes. However, designing a TR can be a complex process that requires careful consideration of various factors, including patient safety, workflow efficiency, equipment placement and infection control. This study suggests multiple considerations when designing TRs.

Details

Facilities , vol. 42 no. 5/6
Type: Research Article
ISSN: 0263-2772

Keywords

Article
Publication date: 19 January 2024

Kenneth Lawani, Farhad Sadeghineko, Michael Tong and Mehmethan Bayraktar

The purpose of this study is to explore the suggestions that construction processes could be considerably improved by integrating building information modelling (BIM) with 3D…

68

Abstract

Purpose

The purpose of this study is to explore the suggestions that construction processes could be considerably improved by integrating building information modelling (BIM) with 3D laser scanning technologies. This case study integrated 3D laser point cloud scans with BIM to explore the effects of BIM adoption on ongoing construction project, whilst evaluating the utility of 3D laser scanning technology for producing structural 3D models by converting point cloud data (PCD) into BIM.

Design/methodology/approach

The primary data acquisition adopted the use of Trimble X7 laser scanning process, which is a set of data points in the scanned space that represent the scanned structure. The implementation of BIM with the 3D PCD to explore the precision and effectiveness of the construction processes as well as the as-built condition of a structure was precisely captured using the 3D laser scanning technology to recreate accurate and exact 3D models capable of being used to find and fix problems during construction.

Findings

The findings indicate that the integration of BIM and 3D laser scanning technology has the tendency to mitigate issues such as building rework, improved project completion times, reduced project cost, enhanced interdisciplinary communication, cooperation and collaboration amongst the project duty holders, which ultimately enhances the overall efficiency of the construction project.

Research limitations/implications

The acquisition of data using 3D laser scanner is usually conducted from the ground. Therefore, certain aspects of the building could potentially disturb data acquisition; for example, the gable and sections of eaves (fascia and soffit) could be left in a blind spot. Data acquisition using 3D laser scanner technology takes time, and the processing of the vast amount of data acquired is laborious, and if not carefully analysed, could result in errors in generated models. Furthermore, because this was an ongoing construction project, material stockpiling and planned construction works obstructed and delayed the seamless capture of scanned data points.

Originality/value

These findings highlight the significance of integrating BIM and 3D laser scanning technology in the construction process and emphasise the value of advanced data collection methods for effectively managing construction projects and streamlined workflows.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 15 April 2024

Boussad Moualek, Simon Chauviere, Lamia Belguerras, Smail Mezani and Thierry Lubin

The purpose of this study is to develop a magnetic resonance imaging (MRI)-safe iron-free electrical actuator for MR-guided surgical interventions.

Abstract

Purpose

The purpose of this study is to develop a magnetic resonance imaging (MRI)-safe iron-free electrical actuator for MR-guided surgical interventions.

Design/methodology/approach

The paper deals with the design of an MRI compatible electrical actuator. Three-dimensional electromagnetic and thermal analytical models have been developed to design the actuator. These models have been validated through 3D finite element (FE) computations. The analytical models have been inserted in an optimization procedure that uses genetic algorithms to find the optimal parameters of the actuator.

Findings

The analytical models are very fast and precise compared to the FE models. The computation time is 0.1 s for the electromagnetic analytical model and 3 min for the FE one. The optimized actuator does not perturb imaging sequence even if supplied with a current 10 times higher than its rated one. Indeed, the actuator’s magnetic field generated in the imaging area does not exceed 1 ppm of the B0 field generated by the MRI scanner. The actuator can perform up to 25 biopsy cycles without any risk to the actuator or the patient since he maximum temperature rise of the actuator is about 20°C. The actuator is compact and lightweight compared to its pneumatic counterpart.

Originality/value

The MRI compatible actuator uses the B0 field generated by scanner as inductor. The design procedure uses magneto-thermal coupled models that can be adapted to the design of a variety actuation systems working in MRI environment.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 16 August 2023

Ashish Kaushik and Ramesh Kumar Garg

This study aims to cover the overall gamut of rapid prototyping processes and biomaterials used for the fabrication of occlusal splints in a comprehensive manner and elucidate the…

Abstract

Purpose

This study aims to cover the overall gamut of rapid prototyping processes and biomaterials used for the fabrication of occlusal splints in a comprehensive manner and elucidate the characteristics of the materials, which are essential in determining their clinical efficacy when exposed to oral surroundings.

Design/methodology/approach

A collective analysis of published articles covering the use of rapid prototyping technologies in the fabrication of occlusal splints, including manufacturing workflow description and essential properties (mechanical- and thermal-based) evaluation of biocompatible splinting materials, was performed.

Findings

Without advances in rapid prototyping processes and materials engineering, occlusal splints would tend to underperform clinically due to biomechanical limitations.

Social implications

Three-dimensional printing can improve the process capabilities for commercial customization of biomechanically efficient occlusal splints.

Originality/value

Rapid technological advancement in dentistry with the extensive utilization of rapid prototyping processes, intra-oral scanners and novel biomaterial seems to be the potential breakthrough in the fabrication of customized occlusal splints which have endorsed occlusal splint therapy (OST) as a cornerstone of orthodontic treatment.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 22 April 2024

Muhammad Abas, Tufail Habib and Sahar Noor

This study aims to investigate the fabrication of solid ankle foot orthoses (SAFOs) using fused deposition modeling (FDM) printing technology. It emphasizes cost-effective 3D…

Abstract

Purpose

This study aims to investigate the fabrication of solid ankle foot orthoses (SAFOs) using fused deposition modeling (FDM) printing technology. It emphasizes cost-effective 3D scanning with the Kinect sensor and conducts a comparative analysis of SAFO durability with varying thicknesses and materials, including polylactic acid (PLA) and carbon fiber-reinforced (PLA-C), to address research gaps from prior studies.

Design/methodology/approach

In this study, the methodology comprises key components: data capture using a cost-effective Microsoft Kinect® Xbox 360 scanner to obtain precise leg dimensions for SAFOs. SAFOs are designed using CAD tools with varying thicknesses (3, 4, and 5 mm) while maintaining consistent geometry, allowing controlled thickness impact investigation. Fabrication uses PLA and PLA-C materials via FDM 3D printing, providing insights into material suitability. Mechanical analysis uses dual finite element analysis to assess force–displacement curves and fracture behavior, which were validated through experimental testing.

Findings

The results indicate that the precision of the scanned leg dimensions, compared to actual anthropometric data, exhibits a deviation of less than 5%, confirming the accuracy of the cost-effective scanning approach. Additionally, the research identifies optimal thicknesses for SAFOs, recommending a 4 and 5 mm thickness for PLA-C-based SAFOs and an only 5 mm thickness for PLA-based SAFOs. This optimization enhances the overall performance and effectiveness of these orthotic solutions.

Originality/value

This study’s innovation lies in its holistic approach, combining low-cost 3D scanning, 3D printing and computational simulations to optimize SAFO materials and thickness. These findings advance the creation of cost-effective and efficient orthotic solutions.

Article
Publication date: 4 March 2024

Bo You and Qi Si Wang

The purpose of this paper is to investigate the distribution characteristics of airflow in mine ventilation suits with different pipeline structures when the human body is bent at…

24

Abstract

Purpose

The purpose of this paper is to investigate the distribution characteristics of airflow in mine ventilation suits with different pipeline structures when the human body is bent at various angles. On this basis, the stress points are extracted to investigate the pressure variation of a ventilation suit under different ventilation rates and pipeline structures.

Design/methodology/approach

Based on the three-dimensional human body scanner, portable pressure test and other instruments, a human experiment was conducted in an artificial cabin. The study analyzed and compared the distribution characteristics of clearance under three different pipeline structures, as well as the pressure variation of the ventilation suit.

Findings

The study found that the clearance in front of two pipeline structures gradually increased in size as the degree of bending increased, and there was minimal clearance in the chest and back. The longitudinal structure exhibits a significant decrease in clearance compared to the spiral structure. The pressure value of the spiral pipeline structure with the same ventilation volume is low, followed by the transverse structure, while the longitudinal structure has the highest pressure value. The increase in clothing pressure value of a spiral pipeline structured ventilation suit with varying ventilation volumes is minimal.

Originality/value

The ventilation suit has a promising future as a type of personal protective equipment for mitigating heat damage in mines. It is of great value to study the pipeline structure of the ventilation suit for human comfort.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Open Access
Article
Publication date: 26 January 2024

Nannan Xi, Juan Chen, Filipe Gama, Henry Korkeila and Juho Hamari

In recent years, there has been significant interest in adopting XR (extended reality) technologies such as VR (virtual reality) and AR (augmented reality), particularly in…

2084

Abstract

Purpose

In recent years, there has been significant interest in adopting XR (extended reality) technologies such as VR (virtual reality) and AR (augmented reality), particularly in retail. However, extending activities through reality-mediation is still mostly believed to offer an inferior experience due to their shortcomings in usability, wearability, graphical fidelity, etc. This study aims to address the research gap by experimentally examining the acceptance of metaverse shopping.

Design/methodology/approach

This study conducts a 2 (VR: with vs. without) × 2 (AR: with vs. without) between-subjects laboratory experiment involving 157 participants in simulated daily shopping environments. This study builds a physical brick-and-mortar store at the campus and stocked it with approximately 600 products with accompanying product information and pricing. The XR devices and a 3D laser scanner were used in constructing the three XR shopping conditions.

Findings

Results indicate that XR can offer an experience comparable to, or even surpassing, traditional shopping in terms of its instrumental and hedonic aspects, regardless of a slightly reduced perception of usability. AR negatively affected perceived ease of use, while VR significantly increased perceived enjoyment. It is surprising that the lower perceived ease of use appeared to be disconnected from the attitude toward metaverse shopping.

Originality/value

This study provides important experimental evidence on the acceptance of XR shopping, and the finding that low perceived ease of use may not always be detrimental adds to the theory of technology adoption as a whole. Additionally, it provides an important reference point for future randomized controlled studies exploring the effects of technology on adoption.

Details

Internet Research, vol. 34 no. 7
Type: Research Article
ISSN: 1066-2243

Keywords

Article
Publication date: 14 January 2022

Femi Emmanuel Adeosun and Ayodeji Emmanuel Oke

In recent times, the construction industry is being influenced by technological innovations when delivering a better, more effective and efficient desired project, cyber-physical…

Abstract

Purpose

In recent times, the construction industry is being influenced by technological innovations when delivering a better, more effective and efficient desired project, cyber-physical systems (CPSs) offer a coupling of the physical and engineered systems by monitoring, coordinating, controlling and integrating their operations. This study aims to examine the level of awareness of professionals and usage of CPSs for construction projects in Nigerian construction industry.

Design/methodology/approach

The target population for this study was the professionals in the construction industry consisting Architects, Quantity Surveyors, Engineers and Builders. Data collection was through the use of a structured questionnaire administered to the target population. The data was analyzed by using statistical tools.

Findings

This study concluded that the construction professionals in the Nigerian construction industry are mostly aware about the heating, ventilation and air conditioning (HVAC) systems, global positioning system, microphone, speakers and camera as the most widely used CPSs in construction industry. HVAC systems was also found to be the mostly adopted technologies in the construction industry.

Originality/value

This study recommended that platforms that increase the awareness and encourage the usage of CPSs in construction industry should be encouraged by stakeholders concerned with management of construction projects. Such include electronic construction and adoption of blockchain technology.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 9 February 2024

Martin Novák, Berenika Hausnerova, Vladimir Pata and Daniel Sanetrnik

This study aims to enhance merging of additive manufacturing (AM) techniques with powder injection molding (PIM). In this way, the prototypes could be 3D-printed and mass…

Abstract

Purpose

This study aims to enhance merging of additive manufacturing (AM) techniques with powder injection molding (PIM). In this way, the prototypes could be 3D-printed and mass production implemented using PIM. Thus, the surface properties and mechanical performance of parts produced using powder/polymer binder feedstocks [material extrusion (MEX) and PIM] were investigated and compared with powder manufacturing based on direct metal laser sintering (DMLS).

Design/methodology/approach

PIM parts were manufactured from 17-4PH stainless steel PIM-quality powder and powder intended for powder bed fusion compounded with a recently developed environmentally benign binder. Rheological data obtained at the relevant temperatures were used to set up the process parameters of injection molding. The tensile and yield strengths as well as the strain at break were determined for PIM sintered parts and compared to those produced using MEX and DMLS. Surface properties were evaluated through a 3D scanner and analyzed with advanced statistical tools.

Findings

Advanced statistical analyses of the surface properties showed the proximity between the surfaces created via PIM and MEX. The tensile and yield strengths, as well as the strain at break, suggested that DMLS provides sintered samples with the highest strength and ductility; however, PIM parts made from environmentally benign feedstock may successfully compete with this manufacturing route.

Originality/value

This study addresses the issues connected to the merging of two environmentally efficient processing routes. The literature survey included has shown that there is so far no study comparing AM and PIM techniques systematically on the fixed part shape and dimensions using advanced statistical tools to derive the proximity of the investigated processing routes.

1 – 10 of 180