Search results

1 – 10 of over 9000
Article
Publication date: 15 May 2009

Wu Xiande, Li Hui and Sun Zhaowei

The micro‐satellite clusters have been discussed for several years, however, there is not a common framework about its software, and various researches distributed at different…

Abstract

Purpose

The micro‐satellite clusters have been discussed for several years, however, there is not a common framework about its software, and various researches distributed at different domains. In order to conduct the future work well, the purpose of this paper is to systematically describe micro‐satellite clusters' characteristics, clusters software model, and present a distributed testbed to shorten test process, and minimize the development cost.

Design/methodology/approach

The cluster characteristics and model is summarized through analyzing the past satellite cluster programs. Then the ground test system is designed to shorten micro‐satellite's development period, improve its reliability.

Findings

The clusters' characteristics are discussed, such as coverage, scalability, fault tolerance, low cost, etc. The clusters' data flow and on‐board software architecture are presented according to properties of clusters. Finally, the distributed testbed that focuses on future on‐board software and hardware technologies that aim to rapid design, build, integration, test, deployment, and operation of the future micro‐satellite is designed.

Originality/value

The presentation of software architecture of cluster member can improve the micro‐satellite's development, and the distributed testbed can improve the ground test efficiency, especially, when the micro‐satellite quantity is big.

Details

Aircraft Engineering and Aerospace Technology, vol. 81 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 5 July 2011

Takaya Inamori, Nobutada Sako and Shinichi Nakasuka

This paper aims to present an attitude determination and control system for a nano‐astrometry satellite which requires precise angular rate control. Focus of the research is…

Abstract

Purpose

This paper aims to present an attitude determination and control system for a nano‐astrometry satellite which requires precise angular rate control. Focus of the research is methods to achieve the requirement.

Design/methodology/approach

In order to obtain astrometry data, the satellite attitude should be controlled to an accuracy of 0.05°. Furthermore, attitude spin rate must be controlled to an accuracy of 4×10−7 rad/s during observation. In this paper the following unique ideas to achieve these requirements are introduced: magnetic disturbance compensation and rate estimation using star blurred images.

Findings

This paper presents the feasibility of a high accurate attitude control system in nano‐ and micro‐satellite missions.

Practical implications

This paper presents a possibility of the application of nano‐satellites to remote‐sensing and astronomy mission, which requires accurate attitude control.

Originality/value

Originalities of the paper are the methods to achieve the high accurate attitude control: magnetic disturbance compensation and angular rate estimation using star images.

Details

Aircraft Engineering and Aerospace Technology, vol. 83 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 16 March 2012

Jianmin Su and Yunfeng Dong

Fractionated satellite clusters need coming together and avoiding crashing with limited random initial relative motion conditions. It is not necessary to keep the invariable…

Abstract

Purpose

Fractionated satellite clusters need coming together and avoiding crashing with limited random initial relative motion conditions. It is not necessary to keep the invariable configuration. The purpose of this paper is to put forward a control law which simulates organism swarm motion.

Design/methodology/approach

The motion of satellites follows three rules: coming together, velocity homology and avoiding crash. According to the rules, three control forces should be applied to satellite individuals. The final control force is the sum of three control forces. Electromagnetic dipole strengths calculation is formulated as nonlinear optimization problem. Considering control strengths have to be got in real time, iterative steps of optimization algorithm are fixed.

Findings

A control law which simulates organism swarm motion is put forward. The simulation shows the organism swarm motion simulation control law can keep fractionated satellite cluster coming together and avoiding crash. When iterative steps of optimization algorithm is fixed, the error of solve nonlinear equations is acceptable.

Originality/value

The control law is robust and easy to realize. When electromagnetic satellite cluster need not keep fixed configuration, it is a choice of control law of relative motion.

Details

Aircraft Engineering and Aerospace Technology, vol. 84 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 23 January 2009

Zhai kun and Yang Di

The purpose of this paper is to provide a feasible method to solve the zenith pass problem that can occur when the inter‐satellite linkage antenna of the user satellite is tracing…

Abstract

Purpose

The purpose of this paper is to provide a feasible method to solve the zenith pass problem that can occur when the inter‐satellite linkage antenna of the user satellite is tracing TDRS. The antenna uses the elevation‐over‐azimuth architecture.

Design/methodology/approach

The movement laws of the inter‐satellite linkage can be obtained based on the orbit predictions of the user satellite and TDRS. According to the movement laws, the zenith pass moments and blindness zones are found. The trajectory preprocessor is provided to design a command trajectory for driving the axis of the tilting mechanism.

Findings

In the worst situation, the blindness zone can appear once every half day. Three special orbit altitude values are obtained. When the user satellite picks one of them as its orbit altitude, the blindness zone may be avoided forever. The zenith pass tracing strategies based on the mechanical tilting method have been designed.

Research limitations/implications

This method obtains the stable tracking during the zenith pass course by changing the hardware structure of the antenna. It is too expensive and can influence the pointing precision of the antenna.

Practical implications

The research can help the engineers analyze and solve the zenith pass problem of the antenna.

Originality/value

This paper studies the zenith pass problem that can occur when the inter‐satellite linkage antenna of the user satellite is tracing TDRS and provides a solving method.

Details

Aircraft Engineering and Aerospace Technology, vol. 81 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 29 June 2012

Jihe Wang, Xibin Cao and Jinxiu Zhang

The purpose of this paper is to propose a fuel‐optimal virtual centre selection method for formation flying maintenance in the J2 perturbed environment.

Abstract

Purpose

The purpose of this paper is to propose a fuel‐optimal virtual centre selection method for formation flying maintenance in the J2 perturbed environment.

Design/methodology/approach

Based on the relative orbital elements (ROE) theory, the J2 perturbed relative motions between different satellites in the formation are analyzed, and then the fuel‐optimal virtual centre selection issue for formation flying maintenance are parameterized in terms of ROE. In order to determine the optimal virtual centre, two theories are proposed in terms of ROE.

Findings

Numerical simulations demonstrate that the fuel‐optimal virtual centre selection method is valid, and the control of the ROE of each satellite with respect to a virtual optimal centre of the formation is more efficient regarding the fuel consumption than the control of all satellites with respect to a satellite belonging to the formation.

Research limitations/implications

The fuel‐optimal virtual centre selection method is valid for formation flying mission whose member satellite in circular or near circular orbit.

Practical implications

The fuel‐optimal virtual centre selection approach can be used to solve formation flying maintenance problem which involves multiple satellites in the formation.

Originality/value

The paper proposes a fuel‐optimal virtual centre selection method in terms of ROE, and shows that keeping the formation with respect the optimal virtual centre is more fuel efficient.

Details

Aircraft Engineering and Aerospace Technology, vol. 84 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 16 August 2022

Awel Haji Ibrahim, Dagnachew Daniel Molla and Tarun Kumar Lohani

The purpose of this study is to address a highly heterogeneous rift margin environment and exhibit considerable spatiotemporal hydro-climatic variations. In spite of limited…

Abstract

Purpose

The purpose of this study is to address a highly heterogeneous rift margin environment and exhibit considerable spatiotemporal hydro-climatic variations. In spite of limited, random and inaccurate data retrieved from rainfall gauging stations, the recent advancement of satellite rainfall estimate (SRE) has provided promising alternatives over such remote areas. The aim of this research is to take advantage of the technologies through performance evaluation of the SREs against ground-based-gauge rainfall data sets by incorporating its applicability in calibrating hydrological models.

Design/methodology/approach

Selected multi satellite-based rainfall estimates were primarily compared statistically with rain gauge observations using a point-to-pixel approach at different time scales (daily and seasonal). The continuous and categorical indices are used to evaluate the performance of SRE. The simple scaling time-variant bias correction method was further applied to remove the systematic error in satellite rainfall estimates before being used as input for a semi-distributed hydrologic engineering center's hydraulic modeling system (HEC-HMS). Runoff calibration and validation were conducted for consecutive periods ranging from 1999–2010 to 2011–2015, respectively.

Findings

The spatial patterns retrieved from climate hazards group infrared precipitation with stations (CHIRPS), multi-source weighted-ensemble precipitation (MSWEP) and tropical rainfall measuring mission (TRMM) rainfall estimates are more or less comparably underestimate the ground-based gauge observation at daily and seasonal scales. In comparison to the others, MSWEP has the best probability of detection followed by TRMM at all observation stations whereas CHIRPS performs the least in the study area. Accordingly, the relative calibration performance of the hydrological model (HEC-HMS) using ground-based gauge observation (Nash and Sutcliffe efficiency criteria [NSE] = 0.71; R2 = 0.72) is better as compared to MSWEP (NSE = 0.69; R2 = 0.7), TRMM (NSE = 0.67, R2 = 0.68) and CHIRPS (NSE = 0.58 and R2 = 0.62).

Practical implications

Calibration of hydrological model using the satellite rainfall estimate products have promising results. The results also suggest that products can be a potential alternative source of data sparse complex rift margin having heterogeneous characteristics for various water resource related applications in the study area.

Originality/value

This research is an original work that focuses on all three satellite rainfall estimates forced simulations displaying substantially improved performance after bias correction and recalibration.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 31 May 2022

Li Zhang, Haiyan Fang, Weimin Bao, Haifeng Sun, Lirong Shen, Jianyu Su and Liang Zhao

X-ray pulsar navigation (XPNAV) is an autonomous celestial navigation technology for deep space missions. The error in the pulse time of arrival used in pulsar navigation is large…

Abstract

Purpose

X-ray pulsar navigation (XPNAV) is an autonomous celestial navigation technology for deep space missions. The error in the pulse time of arrival used in pulsar navigation is large for various practical reasons and thus greatly reduces the navigation accuracy of spacecraft near the Earth and in deep space. This paper aims to propose a novel method based on ranging information that improves the performance of XPNAV.

Design/methodology/approach

This method replaces one pulsar observation with a satellite observation. The ranging information is the difference between the absolute distance of the satellite relative to the spacecraft and the estimated distance of the satellite relative to the spacecraft. The proposed method improves the accuracy of XPNAV by combining the ranging information with the observation data of two pulsars.

Findings

The simulation results show that the proposed method greatly improves the XPNAV accuracy by 70% compared with the conventional navigation method that combines the observations of three pulsars. This research also shows that a larger angle between the orbital plane of the satellite and that of the spacecraft provides higher navigation accuracy. In addition, a greater orbital altitude difference implies higher navigation accuracy. The position error and ranging error of the satellite have approximately linear relationships with the navigation accuracy.

Originality/value

The novelty of this study is that the satellite ranging information is integrated into the pulsar navigation by using mathematical geometry.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 October 2018

Saleh Akbaritabar, Reza Esmaelzadeh and Reza Zardashti

This paper aims to describe a novel type of attitude control system (ACS) in different configurations. This servomechanism is compared with control moment gyro (CMG) in…

Abstract

Purpose

This paper aims to describe a novel type of attitude control system (ACS) in different configurations. This servomechanism is compared with control moment gyro (CMG) in significant parameters of performance for ACS of rigid satellite.

Design/methodology/approach

This new actuator is the fluid containing one or more rings and fluid flow is supplied by pump. The required torque control is obtained by managing fluid angular velocity. The cube-shaped satellite with three rings of fluid in the principle axes is considered for modeling. The satellite is considered rigid and nonlinear dynamics equation is used for it. In addition, the failure of the pyramid-shaped satellite with an additional ring fluid is discussed.

Findings

The controller model for four fluid rings has more complexity than for three fluid rings. The simulation results illustrated that four fluid rings need less energy for stabilization than three fluid rings. The performance of this type of actuator is compared with CMG. At last, it is demonstrated that performance parameters are improved with fluid ring actuator.

Research limitations/implications

Fluid ring actuator can be affected by environmental pressure and temperature. Therefore, freezing and boiling temperature of the fluid should be considered in system designation.

Practical implications

Fluid ring servomechanism can be used as ACS in rigid satellites. This actuator is compared by CMG, the prevalent actuator. It has less displacement attitude maneuver.

Originality/value

The results provide the feasibility and advantages of using fluid rings as satellite ACS. The quaternion error controller is used for this model to enhance its performance.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 September 2015

Xiaowei Shao, Mingxuan Song, Dexin Zhang and Ran Sun

The purpose of this paper is to present a method to conduct small satellite rendezvous mission by using the differential aerodynamic forces under J2 perturbation in low earth…

Abstract

Purpose

The purpose of this paper is to present a method to conduct small satellite rendezvous mission by using the differential aerodynamic forces under J2 perturbation in low earth orbit (LEO).

Design/methodology/approach

Each spacecraft is assumed to be equipped with two large flat plates, which can be controlled for generating differential accelerations in all three directions. Based on the kinetic theory, the aerodynamic lift and drag generated by a flat plate are calculated. To describe the relative dynamics under J2 perturbation, a modified model is derived from the high-fidelity linearized J2 equations proposed by Schweighart and Sedwick.

Findings

Simulation results demonstrate that the proposed method is valid and efficient to solve satellite rendezvous problem, and the modified model considering J2 effect shows better accuracy than the Horsley’s Clohessy–Wiltshire-based model.

Research limitations/implications

Because aerodynamic force will reduce drastically as orbital altitude rises, the rendezvous control strategy for small satellites presented in this paper should be limited to the scenarios when satellites are in LEO.

Practical implications

The rendezvous control method in this paper can be applied to solve satellite rendezvous maneuver problem for small satellites in LEO.

Originality/value

This paper proposes a modified differential aerodynamic control model by considering J2 perturbation, and simulation results show that it can achieve higher rendezvous control accuracy.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 4 January 2016

Hongwei Yang, Yu Jiang and Hexi Baoyin

This paper aims to provide a new method to design a fuel efficient control strategy such as J2 perturbation for deploying a constellation into a specified configuration. The…

Abstract

Purpose

This paper aims to provide a new method to design a fuel efficient control strategy such as J2 perturbation for deploying a constellation into a specified configuration. The nonspherical perturbation, mainly J2 perturbation, is the dominant perturbation for low-Earth-orbit (LEO) satellites of a constellation. This perturbation can be utilized in the control strategy to lower fuel consumption enormously.

Design/methodology/approach

The relationship of the coupled variables, the relative right ascension of ascending node (RAAN) and the relative phase (RP), are analyzed. First-order approximation expressions of the relative RAAN (RRAAN) and the relative phase (RP) with respect to the semimajor axis are derived. According to the Gauss’ variational equations, the reduced explicit functions of these variables in regard to each active control are established. Based on these functions, control strategy design methods, including the preliminary planning and iterative corrections, are proposed. The numerical simulation is carried out to verify the proposed method.

Findings

The results indicate that the constellation can be deployed accurately about the semimajor axis, the RRAAN and the relative phase (RP) by the developed fuel efficient control strategy.

Research limitations/implications

The proposed control strategy is limited for the orbital altitude where the J2 perturbation is dominant.

Practical implications

The proposed effective method is applicable for the engineers planning an orbital control strategy of deploying satellites of a constellation.

Originality/value

The new control strategy can realize utilization of J2 perturbation and an accurate deployment, simultaneously. Further, this paper provides practical help for satellite engineers.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 10 of over 9000