Search results

1 – 1 of 1
Article
Publication date: 2 May 2017

Mirosław Seredyński, Sara Battaglioli, Robin P. Mooney, Anthony J. Robinson, Jerzy Banaszek and Shaun McFadden

Numerical models of manufacturing processes are useful and provide insight for the practitioner; however, model verification and validation are a prerequisite for…

Abstract

Purpose

Numerical models of manufacturing processes are useful and provide insight for the practitioner; however, model verification and validation are a prerequisite for expedient application. This paper aims to detail the code-to-code verification of a thermal numerical model for the Bridgman solidification process of alloys in a two-dimensional axisymmetric domain, against an established commercial code (ANSYS Fluent); the work is considered a confidence building step in model development.

Design/methodology/approach

A grid sensitivity analysis is carried out to establish grid independence, and this is followed by simulations of two transient solidification scenarios: pulling rate step change and ramp input; the results of which are compared and discussed.

Findings

Good conformity of results is achieved; hence, the non-commercial model is code-to-code verified; in addition, the ability of the non-commercial model to deal with radial heat flow is demonstrated.

Originality/value

The ability of the home made model for Bridgman furnace solidification to deal with cases where significant radial heat transfer occurs in the sample was demonstrated. The introduction of front tracking to model the macroscopic growth of dendritic mush and the region of undercooled liquid is identified as the next step in model development.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 1 of 1