Search results

1 – 10 of over 1000
Article
Publication date: 25 May 2012

J.R. Correia, M. Garrido, J.A. Gonilha, F.A. Branco and L.G. Reis

The purpose of this paper is to present experimental investigations on the structural behaviour of composite sandwich panels for civil engineering applications. The performance of…

1200

Abstract

Purpose

The purpose of this paper is to present experimental investigations on the structural behaviour of composite sandwich panels for civil engineering applications. The performance of two different core materials – rigid plastic polyurethane (PU) foam and polypropylene (PP) honeycomb – combined with glass fibre reinforced polymer (GFRP) skins, and the effect of using GFRP ribs along the longitudinal edges of the panels were investigated.

Design/methodology/approach

The experimental campaign first included flatwise tensile tests on the GFRP skins; edgewise and flatwise compressive tests; flatwise tensile tests on small‐scale sandwich specimens; and shear tests on the core materials. Subsequently, flexural static and dynamic tests were carried out in full‐scale sandwich panels (2.50×0.50×0.10 m3) in order to evaluate their service and failure behaviour. Linear elastic analytical and numerical models of the tested sandwich panels were developed in order to confirm the effects of varying the core material and of introducing GFRP ribs.

Findings

Tests confirmed the considerable influence of the core, namely of its stiffness and strength, on the performance of the unstrengthened panels; in addition, tests showed that the introduction of lateral reinforcements significantly increases the stiffness and strength of the panels, with the shear behaviour of strengthened panels being governed by the ribs. The unstrengthened panels collapsed due to core shear failure, while the strengthened panels failed due to face skin delamination followed by crushing of the skins. The models, validated with the experimental results, allowed simulating the serviceability behaviour of the sandwich panels with a good accuracy.

Originality/value

The present study confirmed that composite sandwich panels made of GFRP skins and PU rigid foam or PP honeycomb cores have significant potential for a wide range of structural applications, presenting significant stiffness and strength, particularly when strengthened with lateral GFRP ribs.

Article
Publication date: 14 August 2017

Gang Zhou, Bolun Zhang and Aimee Pasricha

The indentation behaviour of sandwich panels is significant to incipient damage and is known to be affected by a number of dominant parameters. However, it is challenging not only…

Abstract

Purpose

The indentation behaviour of sandwich panels is significant to incipient damage and is known to be affected by a number of dominant parameters. However, it is challenging not only to demonstrate how those few dominant parameters influence the indentation behaviour but also to ascertain that such influence was coupled to the variation of the other dominant parameters. The paper aims to discuss these issues.

Design/methodology/approach

In this work, the authors adopted a controllable quasi-static testing to carry out a diagnostic interrogation on the nature of incipient damage in laminate-skinned sandwich panels using hemispherical indenter and used photographs taken from the cross-sections of all the cut-up tested specimens, which were stopped both just before and after the initial critical loads, respectively, to confirm the mechanism of the incipient damage. Sandwich panels with aluminium honeycomb core had carbon/epoxy skins of two different thicknesses and lay-ups and hemispherical nosed indenter had three different diameters.

Findings

The authors found that: the incipient damage mechanism in all the panels was combined delamination in the skin and core crushing without debonding; doubling the skin thickness had the significant enhancement on critical load and indentation and this enhancement became greater for the larger indenter diameters; the indenter diameter had the moderate effect on critical load in the thick panels from 8 to 14 mm but had the negligible effect on thin panels and no effect on the thick panels from 14 to 20 mm; varying the skin lay-up or support had little effect on the indentation behaviour.

Research limitations/implications

These findings were limited to the constant core density and core thickness. Varying the former significantly could alter the findings accordingly.

Practical implications

The results of this work should be tremendously useful to design and analysis in industrial applications of sandwich structures in aircraft, vehicles, marine vessels and transport carriages for situations involving localised loading and deformation.

Originality/value

The results of this research work is one of the very few that demonstrated a systematic understanding of the indentation behaviour characteristics of sandwich construction, which is vital to the establishment of indentation law for sandwich structures in future.

Details

International Journal of Structural Integrity, vol. 8 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 2 January 2023

Mustafa S. Al-Khazraji, S.H. Bakhy and M.J. Jweeg

The purpose of this review paper is to provide a review of the most recent advances in the field of manufacturing composite sandwich panels along with their advantages and…

Abstract

Purpose

The purpose of this review paper is to provide a review of the most recent advances in the field of manufacturing composite sandwich panels along with their advantages and limitations. The other purpose of this paper is to familiarize the researchers with the available developments in manufacturing sandwich structures.

Design/methodology/approach

The most recent research articles in the field of manufacturing various composite sandwich structures were reviewed. The review process started by categorizing the available sandwich manufacturing techniques into nine main categories according to the method of production and the equipment used. The review is followed by outlining some automatic production concepts toward composite sandwich automated manufacturing. A brief summary of the sandwich manufacturing techniques is given at the end of this article, with recommendations for future work.

Findings

It has been found that several composite sandwich manufacturing techniques were proposed in the literature. The diversity of the manufacturing techniques arises from the variety of the materials as well as the configurations of the final product. Additive manufacturing techniques represent the most recent trend in composite sandwich manufacturing.

Originality/value

This work is valuable for all researchers in the field of composite sandwich structures to keep up with the most recent advancements in this field. Furthermore, this review paper can be considered as a guideline for researchers who are intended to perform further research on composite sandwich structures.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 2 November 2018

Majed Mokhtari, M. Shahravy and M. Zabihpoor

The purpose of this study is to focus on the developments of carbon fiber reinforced polymer (CFRP) panels with stepwise graded properties on adhesive layer. The various arranges…

Abstract

Purpose

The purpose of this study is to focus on the developments of carbon fiber reinforced polymer (CFRP) panels with stepwise graded properties on adhesive layer. The various arranges of the graded properties of the adhesive layer have been checked according to experimental results of the literatures and based on applicability.

Design/methodology/approach

The finite element (FE) models and experimental modal tests of the manufactured CFRP sandwich panel specimens have been investigated. The core thickness, core density and orientation of the fiber direction of the sandwich panel face – sheets have been parametrically checked based on modal behavior. Two fully free and fully clamped boundary conditions (BC) have been checked in stepwise graded adhesive zone (SGAZ) cases and first five non-zero natural frequencies (NF) have been compared. Dynamic response of the SGAZ includes modal analysis and transient dynamic loading have been performed numerically with ABAQUS 6.12 well-known FE code.

Findings

The first non-zero NF of SGAZ Case 4 was 11.69 per cent higher than homogenous Case 2 and 7.06 per cent lower than Case 1 in fully free boundary conditions. A total of 26.38 per cent is the greatest discrepancy between fist five non-zero NFs of all cases with two BCs (Case 1 vs Case 2 in fully clamped BC). Maximum structural damping behavior and minimum stress picks have been studied during transient dynamic loading analysis of CFRP panel with SGAZ. SGAZ Case 3 (middle adhesive with lower modulus) has increased the maximum structural damping while reducing the minimum out of plain tip displacements during transient dynamic loading by 111.26 per cent in comparison with homogenous Case 2. Also, Case 3 has reduced the Mises stress picks on the adhesive region by 605.68 per cent.

Practical implications

Making a stepwise graded adhesive region (without any added mass) has been shown that it is a novel and useful way to achieve a wide range of stiffness on CFRP panels.

Originality/value

Development of the sandwich panels with various stiffness and damping properties.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 23 March 2020

Abdelmadjid Si Salem, Fatma Taouche-Kkheloui and Kamal Ait Tahar

The present study aims to experimentally investigate the flexural and buckling performances of novel sandwich panels manufactured with sawdust-based modified mortar core and both…

Abstract

Purpose

The present study aims to experimentally investigate the flexural and buckling performances of novel sandwich panels manufactured with sawdust-based modified mortar core and both polypropylene and reinforced polymer plates as skins.

Design/methodology/approach

The experimental investigation includes two main steps, characterization tests were firstly carried out in order to identify the laws behavior of the constitutive raw materials. The second one investigates 42 sandwich panels tested under three-points bending and buckling according to standard norms.

Findings

The emphasized test results in terms of bearing capacity; buckling strength, ductility, and failure mechanisms confirm that the overall and observed behavior of tested eco-friendly panels was in general satisfactory compared with experimental values reported in the literature. Indeed, the failure modes under bending and buckling conditions were summarized as shear/crimping failure of the sawdust-based mortar core without debonding of the core–skins interface.

Originality/value

The paper provides original information about the development of novel sandwich panels with a bio-based core and polymer skins for construction usage as interior partitioning walls.

Details

International Journal of Structural Integrity, vol. 12 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 15 June 2015

Li Yang, Ola A Harrysson, Harvey A West II, Denis R. Cormier, Chun Park and Kara Peters

The aim of this study is to perform a comparative study on sandwich structures with several types of three-dimensional (3D) reticulate cellular structural core designs for their…

Abstract

Purpose

The aim of this study is to perform a comparative study on sandwich structures with several types of three-dimensional (3D) reticulate cellular structural core designs for their low-energy impact absorption abilities using powder bed additive manufacturing methods. 3D reticulate cellular structures possess promising potentials in various applications with sandwich structure designs. One of the properties critical to the sandwich structures in applications, such as aerospace and automobile components, is the low-energy impact performance.

Design/methodology/approach

Sandwich samples of various designs, including re-entrant auxetic, rhombic, hexagonal and octahedral, were designed and fabricated via selective laser sintering (SLS) process using nylon 12 as material. Low-energy drop weight test was performed to evaluate the energy absorption of various designs. Tensile coupons were also produced using the same process to provide baseline material properties. The manufacturing issues such as geometrical accuracy and anisotropy effect as well as their effects on the performance of the structures were discussed.

Findings

In general, 3D reticulate cellular structures made by SLS process exhibit significantly different characteristics under low-energy drop weight impact compared to the regular extruded honeycomb sandwich panels. A hexagonal sandwich panel exhibits the largest compliance with the smallest energy absorption ability, and an octahedral sandwich panel exhibits high stiffness as well as good impact protection ability. Through a proper geometrical design, the re-entrant auxetic sandwich panels could achieve a combination of high energy absorption and low response force, making it especially attractive for low-impact protection applications.

Originality/value

There has been little work on the comparative study of the energy absorption of various 3D reticulate cellular structures to date. This work demonstrates the potential of 3D reticulate cellular structures as sandwich cores for different purposes. This work also demonstrates the possibility of controlling the performance of this type of sandwich structures via geometrical and process design of the cellular cores with powder bed additive manufacturing systems.

Details

Rapid Prototyping Journal, vol. 21 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 March 2002

Jaroslav Mackerle

Gives a bibliographical review of the finite element analyses of sandwich structures from the theoretical as well as practical points of view. Both isotropic and composite…

3429

Abstract

Gives a bibliographical review of the finite element analyses of sandwich structures from the theoretical as well as practical points of view. Both isotropic and composite materials are considered. Topics include: material and mechanical properties of sandwich structures; vibration, dynamic response and impact problems; heat transfer and thermomechanical responses; contact problems; fracture mechanics, fatigue and damage; stability problems; special finite elements developed for the analysis of sandwich structures; analysis of sandwich beams, plates, panels and shells; specific applications in various fields of engineering; other topics. The analysis of cellular solids is also included. The bibliography at the end of this paper contains 655 references to papers, conference proceedings and theses/dissertations dealing with presented subjects that were published between 1980 and 2001.

Details

Engineering Computations, vol. 19 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 October 2018

Pankaj V. Katariya, Subrata Kumar Panda and Trupti Ranjan Mahapatra

The purpose of this paper is to develop a general mathematical model for the evaluation of the bending and vibration responses of the skew sandwich composite plate using…

Abstract

Purpose

The purpose of this paper is to develop a general mathematical model for the evaluation of the bending and vibration responses of the skew sandwich composite plate using higher-order shear deformation theory. The sandwich structural components are highly preferable in modern engineering application because of their desirable structural advantages despite the manufacturing and analysis complexities. The present model is developed to solve the bending and vibration problem of the skew sandwich composite plate with adequate accuracy numerically in the absence of the experimental analysis.

Design/methodology/approach

The skew sandwich composite plate structure is modelled in the present analysis by considering laminated face sheet in conjunction with isotropic and/or orthotropic core numerically with the help of the higher-order mathematical model. Further, the responses are computed numerically with the help of in-house computer code developed in matrix laboratory (MATLAB) environment in conjunction with finite element (FE) steps. The system governing equations are derived via variational technique for the computation of the static and the frequency responses.

Findings

The skew sandwich composite plate is investigated using the higher-order kinematic model where the transverse displacement through the thickness is considered to be linear. The convergence and the validation study of the bending and the frequency values of the sandwich structure indicate the necessary accuracy. Further, the current model has been used to highlight the applicability of the higher-order kinematics for the evaluation of the sandwich structural responses (frequency and static deflections) for different design parameters.

Originality/value

In the present paper, the bending and the vibration responses of the skew sandwich composite plate are analysed numerically using the equivalent single-layer higher-order kinematic theory for the isotropic and the orthotropic core numerically with the help of isoparametric FE steps. Finally, it is understood that the present model is capable of solving the sandwich structural responses with less computation cost and adequate accuracy.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 February 2001

Howard Smith

Describes preliminary structural design work on a notional uninhabited tactical aircraft (UTA), carried out at Cranfield University. UTAs are seen as an important future element…

1168

Abstract

Describes preliminary structural design work on a notional uninhabited tactical aircraft (UTA), carried out at Cranfield University. UTAs are seen as an important future element of military fleets. A notional baseline requirement was derived, leading to the evolution of a design solution. The basic requirements for such a UTA are naturally highly classified but, although industry has been hesitant to comment, the baseline requirements and design solution developed herein are believed to be reasonable.

Details

Aircraft Engineering and Aerospace Technology, vol. 73 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 28 June 2023

Cristina-Elisabeta Pelin, Alexandra-Raluca Axenie, Adrian Gaz, George Pelin, Adriana Stefan, Cristian Moisei and Albert Arnau Cubillo

This paper aims to present the procedures necessary to determine the insert allowable for a composite sandwich, considering that the inserts were the most commonly used means to…

Abstract

Purpose

This paper aims to present the procedures necessary to determine the insert allowable for a composite sandwich, considering that the inserts were the most commonly used means to install equipment on the composite structure of Clean Sky 2 (CS2)-RACER compound helicopter.

Design/methodology/approach

The installation of the equipment inside of the airframe shall comply with the certification regulations, especially in relation to the inertial factors. Establishing of the needed number of inserts to fix the equipment is directly linked to the allowable coming from coupon tests. The materials and test procedures to which they were subjected are part of the process qualification used in the development of the CS2-RACER Main Fuselage. The samples were tested in two different static mechanical loadings, consisting of pull-out insert and shear-out insert tests. The mechanical behaviour and failure mechanism of the materials were evaluated using optical and scanning electron microscopy.

Findings

The insert installation on the sandwich structure influences the behaviour and mechanical properties during pull-out and shear-out testing.

Research limitations/implications

The limited data available in standardized documents related to insert testing makes it difficult to compare results with certified baseline values.

Practical implications

To reduce the effort of selecting the optimized insert system, specific parameters are included in analytical pre-sizing, i.e. type of loads, geometry, materials, failure modes, special conditions such as manufacturing and testing.

Originality/value

The results of the study presenting the design, manufacturing and mechanical testing of pull-out and shear-out inserts used in composite materials sandwich-type coupons provide valuable information regarding the insert allowable determination.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of over 1000