Search results

1 – 10 of 464
Article
Publication date: 12 March 2018

Donghua Zhao, Weizhong Guo, Baibing Zhang and Feng Gao

The purpose of this paper is to review available technologies, analyse their features, propose a new approach of 3D sand mould printing based on line forming, introduce the…

Abstract

Purpose

The purpose of this paper is to review available technologies, analyse their features, propose a new approach of 3D sand mould printing based on line forming, introduce the manufacturing principle and show advantages of this approach, especially for larger parts with large Z steps in the build, such as 2 mm stepwise.

Design/methodology/approach

This paper introduces 3D sand mould printing, compares and analyses technological process and existing fabrication approaches among available technologies first. Then, a new approach of 3D sand mould printing is proposed to improve build speed. In addition, the proposed system will be analysed or benchmarked against existing systems.

Findings

A new approach based on line forming of sand mould printing is put forward by reviewing and analysing available technologies, to improve build speed from the aspect of basic moulding movement instead of optimization of moulding methods and process parameters. The theoretical calculation and analysis shows that build speed can be improved greatly, and it is more suitable for the manufacture of large-scale casting’s sand mould when considering dimensional accuracy and printing error, as well as uniformity of each layer.

Research limitations/implications

The specific implement scheme of line forming and nozzle’s specific structure of this new approach need further study.

Practical implications

Much higher build speed of 3D sand mould printing with new approach brings evident implication for moulds companies and manufacturing industry, having a far-reaching influence on the development of national economy.

Originality/value

This paper reviews available technologies and presents a new approach of 3D sand mould printing for the first time. Analysis of the new approach shows that this new method of sand mould printing can boost build speed greatly. So, its application prospect is great.

Details

Rapid Prototyping Journal, vol. 24 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Abstract

Purpose

The purpose of this study is to analyse the problem of high binder content in sand mould and to solve it. Meanwhile, to increase build speed, especially for heavy casting’s sand mould with a high value in layer height, such as 2 mm in construction instead of the industry standard of 0.3 mm, line forming for three-dimensional (3D) sand mould printing is researched.

Design/methodology/approach

Brief introduction of 3D sand mould printing and key issues are given first. Then, this paper quantitatively analyses binder content in sand mould. Finally, to acquire sand mould with appropriate binder content and high build speed, line forming combining traditional furan no-bake sand manufacture technique is researched, as well as relevant feasible schemes and current progress.

Findings

The study shows that compared with traditional technique, binder content in sand mould produced by available 3D printing technique is too high, bad for sand mould’s properties and quality of castings, while line forming brings guaranteed binder content and improved build speed.

Research limitations/implications

More experiments are needed to demonstrate quantitative analysis of binder content and to obtain flowability of moist sand, detailed structure design of nozzle and practical build speed, as well as methods of circulation of materials considering solidification time.

Practical implications

Line forming with higher build speed and suitable binder content means excellent properties of sand mould and castings as well, bringing obvious implication for moulds industries and manufacturing industry.

Originality/value

This new method could increase build speed and meanwhile guarantee binder content. Thus, its application prospect is promising.

Details

Rapid Prototyping Journal, vol. 25 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 October 2019

Zhi Guo, Zhongde Shan, Feng Liu, Dong Du and Mengmeng Zhao

In this paper, the effects of the adhesive and curing agent contents on the tensile strength, bending strength, gas evolution and gas permeability of three-dimensional printed sand

Abstract

Purpose

In this paper, the effects of the adhesive and curing agent contents on the tensile strength, bending strength, gas evolution and gas permeability of three-dimensional printed sand molds are studied. A strength model of the three-dimensional printed sand molds is proposed. The multi-material composite sand mold forming test is carried out. In addition, the mesostructure of the sand mold is studied.

Design/methodology/approach

The performances of three-dimensional printed sand mold such as tensile strength, bending strength, gas evolution and gas permeability are studied using the standard test methods. The mesostructure of the sand mold is studied by digital core technology.

Findings

A sand mold strength model based on the resin adhesive content, curing agent content and sand mold compactness are obtained. Two types of multi-material composite three-dimensional printed sand molds are proposed. An increase in the curing agent content in the sand mold widens the mesoscopic characteristic size distribution of the sand mold, and large-sized mesostructures appear, resulting in a decrease in the sand mold bearing capacity.

Practical implications

Process parameters that affect the performance of three-dimensional printed sand mold are revealed. The sand mold bearing curve provides a reference for the ultimate design of three-dimensional printed sand mold.

Originality/value

The paper deals with experimental work on the performance and mesostructure of multi-material composite three-dimensional printed sand mold with different contents of adhesive and curing agent. That gives a perspective on future designs of sand mold based on these principles.

Details

Rapid Prototyping Journal, vol. 26 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 August 2019

Donghua Zhao, Weizhong Guo, Baibing Zhang and Feng Gao

This paper aims to investigate the circulation of moist silica sand to provide appropriate feeding modes and references for designing the coating device when printing sand mold

Abstract

Purpose

This paper aims to investigate the circulation of moist silica sand to provide appropriate feeding modes and references for designing the coating device when printing sand mold with line-forming.

Design/methodology/approach

First, this paper briefly introduces sand mold printing with line-forming and the circulation problem brought by moist silica sand. The outlet may be choked due to poor flowability and solidification characteristic, resulting in poor dimensional tolerance and even production failure. Then, based on circulation modeling, a series of feeding modes is proposed to guarantee adequate feeding, avoid solidification and ensure successful fabrication. Finally, the GUI of control software is developed, including slicing, path planning and the function of virtual printing.

Findings

Several feeding modes of moist silica sand are put forward to avoid the choke.

Research limitations/implications

The authors will further investigate the flowability of furan no-bake sand based on experiments.

Originality/value

This paper is going to provide references for the novel design of nozzle, prototype and sand mold printing, influencing significantly on mold manufacturing and the casting industry. This research applies equally to equipment having the circulation of high moist particles with solidification features.

Article
Publication date: 26 October 2018

Tharmalingam Sivarupan, Mohamed El Mansori, Keith Daly, Mark Noel Mavrogordato and Fabrice Pierron

Micro-focus X-ray computed tomography (CT) can be used to quantitatively evaluate the packing density, pore connectivity and provide the basis for specimen derived simulations of…

Abstract

Purpose

Micro-focus X-ray computed tomography (CT) can be used to quantitatively evaluate the packing density, pore connectivity and provide the basis for specimen derived simulations of gas permeability of sand mould. This non-destructive experiment or following simulations can be done on any section of any size sand mould just before casting to validate the required properties. This paper aims to describe the challenges of this method and use it to simulate the gas permeability of 3D printed sand moulds for a range of controlling parameters. The permeability simulations are compared against experimental results using traditional measurement techniques. It suggests that a minimum volume of only 700 × 700 × 700 µm3 is required to obtain, a reliable and most representative than the value obtained by the traditional measurement technique, the simulated permeability of a specimen.

Design/methodology/approach

X-ray tomography images were used to reconstruct 3D models to simulate them for gas permeability of the 3D printed sand mould specimens, and the results were compared with the experimental result of the same.

Findings

The influence of printing parameters, especially the re-coater speed, on the pore connectivity of the 3D printed sand mould and related permeability has been identified. Characterisation of these sand moulds using X-ray CT and its suitability, compared to the traditional means, are also studied. While density and 3PB strength are a measure of the quality of the moulds, the pore connectivity from the tomographic images precisely relates to the permeability. The main conclusions of the present study are provided below. A minimum required sample size of 700 × 700 × 700 µm3 is required to provide representative permeability results. This was obtained from sand specimens with an average sand grain size of 140 µm, using the tomographic volume images to define a 3D mesh to run permeability calculations. Z-direction permeability is always lower than that in the X-/Y-directions due to the lower values of X-(120/140 µm) and Y-(101.6 µm) resolutions of the furan droplets. The anisotropic permeability of the 3D printed sand mould is mainly due to, the only adjustable, X-directional resolution of the furan droplets; the Y-directional resolution is a fixed distance, 102.6 µm, between the printhead nozzles and the Z-directional one is usually, 280 µm, twice the size of an average sand grain.A non-destructive and most representative permeability value can be obtained, using the computer simulation, on the reconstructed 3D X-ray tomography images obtained on a specific location of a 3D printed sand mould. This saves time and effort on printing a separate specimen for the traditional test which may not be the most representative to the printed mould.

Originality/value

The experimental result is compared with the computer simulated results.

Details

Rapid Prototyping Journal, vol. 25 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 October 2018

Tugdual Amaury Le Néel, Pascal Mognol and Jean-Yves Hascoët

The purpose of this paper is to analyze the current state of the art manufacturing techniques using sand molds for the casting industry by the means of additive manufacturing…

1564

Abstract

Purpose

The purpose of this paper is to analyze the current state of the art manufacturing techniques using sand molds for the casting industry by the means of additive manufacturing (AM). In particular, this review will cover two families of 3D printing in regards to sand mold fabrication.

Design/methodology/approach

This paper will discuss the sand casting manufacturing processes of AM by binder jetting (3D printing) and selective laser sintering. Scientific articles, patents and case studies are analyzed. Topics ranging from the technology types to the economic implications are covered.

Findings

The review investigates new factors and methods for mold design, looking at mechanical properties and cost analysis as influenced by material selection, thermal characteristics, topological optimization and manufacturing procedure. Findings in this study suggest that this topic lacks vigorous scientific research and that the case studies by manufacturers thus far are not useful.

Research limitations/implications

As demonstrated by the limited data from previous published studies, a more comprehensive and conclusive analysis is needed due to the lack of interest and resources regarding the AM of sand molds.

Practical implications

This study is a useful tool for any researchers with an interest in the field of AM of sand molds.

Social implications

Key perspectives are proposed.

Originality/value

This review highlights current gaps in this field. The review goes beyond the scientific articles by curating patents and professional case studies.

Details

Rapid Prototyping Journal, vol. 24 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 February 2021

Guili Gao, Weikun Zhang, Zhimin Du, Qingyi Liu, Yanqing Su and Dequan Shi

The major concern technologies during the processing through three-dimensional printing (3DP) are the mechanical and boundary properties of sand models. The parameters such as…

Abstract

Purpose

The major concern technologies during the processing through three-dimensional printing (3DP) are the mechanical and boundary properties of sand models. The parameters such as activator content, resolution X, layer thickness and re-coater speed play a vital role in 3DP sand components. The purpose of this paper is to recommend the optimal process parameters for the best sand mold properties.

Design/methodology/approach

In this paper, taking the parameters of the activator content, resolution X, layer thickness and re-coater speed as the influence factors, an orthogonal test of L16(44) was designed to discuss the influences of those parameters on the mechanical and boundary properties. Three-point bending (3PB) test was used to characterize the actual bending strength, and the boundary accuracy was assessed by the deviation of the three-point bending samples compared with its design scale.

Findings

The experimental results showed that the resolution X and layer thickness are the main parameters affecting sand mold properties. The strength will attain its maximum when the resolution X and layer thickness are the minimum. The optimal parameters were screened and verified by the confirmation test. The optimal process parameters for best strength and less gas evolution are the activator of 0.19%, resolution X of 0.1 mm, layer thickness of 0.28 mm and re-coater speed of 210 mm/s.

Originality/value

The novelty of this paper is the select of significant parameters on 3D-printed sand model properties. A mathematical model was built to analyze the effect of these parameters. The optimal process parameters for the best properties were got.

Details

Rapid Prototyping Journal, vol. 27 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 June 2020

Paul Lynch, C.R. Hasbrouck, Joseph Wilck, Michael Kay and Guha Manogharan

This paper aims to investigate the current state, technological challenges, economic opportunities and future directions in the growing “indirect” hybrid manufacturing ecosystem…

Abstract

Purpose

This paper aims to investigate the current state, technological challenges, economic opportunities and future directions in the growing “indirect” hybrid manufacturing ecosystem, which integrates traditional metal casting with the production of tooling via additive manufacturing (AM) process including three-dimensional sand printing (3DSP) and printed wax patterns.

Design/methodology/approach

A survey was conducted among 100 participants from foundries and AM service providers across the USA to understand the current adoption of AM in metal casting as a function of engineering specifications, production demand, volume and cost metrics. In addition, current technological and logistical challenges that are encountered by the foundries are identified to gather insight into the future direction of this evolving supply chain.

Findings

One of the major findings from this study is that hard tooling costs (i.e. patterns/core boxes) are the greatest challenge in low volume production for foundries. Hence, AM and 3DSP offer the greatest cost-benefit for these low volume production runs as it does not require the need for hard tooling to produce much higher profit premium castings. It is evident that there are major opportunities for the casting supply chain to benefit from an advanced digital ecosystem that seamlessly integrates AM and 3DSP into foundry operations. The critical challenges for adoption of 3DSP in current foundry operations are categorized into as follows: capital cost of the equipment, which cannot be justified due to limited demand for 3DSP molds/cores by casting buyers, transportation of 3DSP molds and cores, access to 3DSP, limited knowledge of 3DSP, limitations in current design tools to integrate 3DSP design principles and long lead times to acquire 3DSP molds/cores.

Practical implications

Based on the findings of this study, indirect hybrid metal AM supply chains, i.e. 3DSP metal casting supply chains is proposed, as 3DSP replaces traditional mold-making in the sand casting process flow, no/limited additional costs and resources would be required for qualification and certification of the cast parts made from three-dimensional printed sand molds. Access to 3DSP resources can be addressed by establishing a robust 3DSP metal casting supply chain, which will also enable existing foundries to rapidly acquire new 3DSP-related knowledge.

Originality/value

This original survey from 100 small and medium enterprises including foundries and AM service providers suggests that establishing 3DSP hubs around original equipment manufacturers as a shared resource to produce molds and cores would be beneficial. This provides traditional foundries means to continue mass production of castings using existing hard tooling while integrating 3DSP for new complex low volume parts, replacement parts, legacy parts and prototyping.

Details

Rapid Prototyping Journal, vol. 26 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 23 September 2022

Wei Li, Xiaoshan Lin and Yi Min Xie

Optimised concrete components are often of complex geometries, which are difficult and costly to cast using traditional formworks. This paper aims to propose an innovative…

Abstract

Purpose

Optimised concrete components are often of complex geometries, which are difficult and costly to cast using traditional formworks. This paper aims to propose an innovative formwork system for optimised concrete casting, which is eco-friendly, recyclable and economical.

Design/methodology/approach

In the proposed formwork system, ice is used as mould pattern to create desired geometry for concrete member, then sand mould is fabricated based on the ice pattern. A mix design and a mixing procedure for the proposed sand mould are developed, and compression tests are also performed to ensure sufficient strength of the sand mould. Furthermore, surface preparation of the sand mould is investigated for easy demoulding and for achieving good concrete surface quality. Additionally, recyclability of the proposed sand mould is tested.

Findings

The proposed mix design and mixing procedure can provide sufficient strength for sand mould in concrete casting. The finished components exhibit smooth surfaces and match designed geometries, and the proposed sand mould can be fully recycled with satisfactory strength.

Originality/value

To the best of the authors’ knowledge, this is the first study that combines ice pattern and sand mould to create recyclable formwork system for concrete casting. The new techniques developed in this research has great potential to be applied in the fabrication of large-scale concrete structures with complex geometries.

Article
Publication date: 18 October 2018

Zhi Guo, Zhongde Shan, Dong Du, Mengmeng Zhao and Milan Zhang

This paper aims to determine how the viscosity and curing agent content affect the flowability of moist silica sand granules. In addition, a coating device was designed according…

Abstract

Purpose

This paper aims to determine how the viscosity and curing agent content affect the flowability of moist silica sand granules. In addition, a coating device was designed according to the flow properties of silica sand granules.

Design/methodology/approach

The flowability of silica sand granules premixed with two curing agents of different viscosities is studied using a Jenike shear apparatus. An open-ended device was used in discharge testing of sand granules with a design based on the variable dip angle of the two plates and variable outlet size.

Findings

The test results show that increasing the curing agent content would significantly decrease the flowability of silica sand granules, and a curing agent of higher viscosity has a greater effect on the flowability of silica sand. The presence of a curing agent strengthens the cohesion among sand granules, lubricates them and restrains their deformation. The shape function of the coating device was obtained by theoretical derivation.

Practical implications

The flow properties provide a valuable theoretical guidance for the design of coating device for sand mold printing.

Originality/value

This paper deals with experimental work on flow properties of silica sand granules with different viscosities and curing agent content. The shape function of a wedge-shaped coating device is obtained based on experimental data.

Details

Rapid Prototyping Journal, vol. 24 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 464