Search results
1 – 3 of 3The objectives of this paper are the application of sensitivity analysis (SA) methods in atmospheric dispersion modeling to the emission dispersion model (EDM) to study the…
Abstract
Purpose
The objectives of this paper are the application of sensitivity analysis (SA) methods in atmospheric dispersion modeling to the emission dispersion model (EDM) to study the prediction of atmospheric dispersion of NO2 generated by an industrial fire, whose results are useful for fire safety applications. The EDM is used to predict the level concentration of nitrogen dioxide (NO2) emitted by an industrial fire in a plant located in an industrial region site in Algeria.
Design/methodology/approach
The SA was defined for the following input parameters: wind speed, NO2 emission rate and viscosity and diffusivity coefficients by simulating the air quality impacts of fire on an industrial area. Two SA methods are used: a local SA by using a one at a time technique and a global SA, for which correlation analysis was conducted on the EDM using the standardized regression coefficient.
Findings
The study demonstrates that, under ordinary weather conditions and for the fields near to the fire, the NO2 initial concentration has the most influence on the predicted NO2 levels than any other model input. Whereas, for the far field, the initial concentration and the wind speed have the most impact on the NO2 concentration estimation.
Originality/value
The study shows that an effective decision-making process should not be only based on the mean values, but it should, in particular, consider the upper bound plume concentration.
Details
Keywords
Chettouh Samia, Rachida Hamzi and Mourad Chebila
The purpose of this paper is to employ lessons learned from the industrial accidents in Skikda refinery during the period from 2005 to 2016 as input data for the numerical…
Abstract
Purpose
The purpose of this paper is to employ lessons learned from the industrial accidents in Skikda refinery during the period from 2005 to 2016 as input data for the numerical simulation of risk consequences to identify the exposed areas to the various effects of industrial accidents.
Design/methodology/approach
In order to assess how the lessons learned can contribute to modeling the accidents effects in the refining activities, this paper presents a combined statistical/dynamic approach that combines two main tools, namely, lessons learned from petroleum refining in Algeria and Areal Locations of Hazardous Atmospheres software.
Findings
The results showed that fire is the most frequent accident at Skikda refinery that is mainly caused by equipment failures with a frequent involvement of crude oil and LNG. The NO2 toxic effects are unacceptable. This means that in the case of a similar accident, the entire population will be exposed to an intolerable concentration of NO2. Therefore, people must be relocated to a safer place. The results indicate that the concentration threshold can be met beyond the distance of 1 km.
Research limitations/implications
Due to the economic importance of Skikda refinery and the absence of data related to the accidents in the refineries of Algiers, Arzew and Hassi Messaoud, this study is limited to the statistical analysis of accidents related to Skikda refinery.
Practical implications
This approach makes the risk assessment more practical and effective for the appropriate utilization of safety barriers and for the whole decision-making process.
Originality/value
This work presents a review paper of accidents that occurred in the oil-refining sector in Algeria, whose objective is learning lessons from past accidents history, by identifying their immediate causes and effects on personnel, equipment and environment in order to propose prevention measures. The novelty of this work is highlighted by the fact that this statistical analysis of oil and gas refining accident is realized for the first time in Algeria. This is due to the difficulty of obtaining data on accidents in the Algerian refining sector; for this reason, the authors have limited the study to the Skikda refinery.
Details
Keywords
This study aims to improve the reliability of emergency safety barriers by using the subjective safety analysis based on evidential reasoning theory in order to develop on a…
Abstract
Purpose
This study aims to improve the reliability of emergency safety barriers by using the subjective safety analysis based on evidential reasoning theory in order to develop on a framework for optimizing the reliability of emergency safety barriers.
Design/methodology/approach
The emergency event tree analysis is combined with an interval type-2 fuzzy-set and analytic hierarchy process (AHP) method. In order to the quantitative data is not available, this study based on interval type2 fuzzy set theory, trapezoidal fuzzy numbers describe the expert's imprecise uncertainty about the fuzzy failure probability of emergency safety barriers related to the liquefied petroleum gas storage prevent. Fuzzy fault tree analysis and fuzzy ordered weighted average aggregation are used to address uncertainties in emergency safety barrier reliability assessment. In addition, a critical analysis and some corrective actions are suggested to identify weak points in emergency safety barriers. Therefore, a framework decisions are proposed to optimize and improve safety barrier reliability. Decision-making in this framework uses evidential reasoning theory to identify corrective actions that can optimize reliability based on subjective safety analysis.
Findings
A real case study of a liquefied petroleum gas storage in Algeria is presented to demonstrate the effectiveness of the proposed methodology. The results show that the proposed methodology provides the possibility to evaluate the values of the fuzzy failure probability of emergency safety barriers. In addition, the fuzzy failure probabilities using the fuzzy type-2 AHP method are the most reliable and accurate. As a result, the improved fault tree analysis can estimate uncertain expert opinion weights, identify and evaluate failure probability values for critical basic event. Therefore, suggestions for corrective measures to reduce the failure probability of the fire-fighting system are provided. The obtained results show that of the ten proposed corrective actions, the corrective action “use of periodic maintenance tests” prioritizes reliability, optimization and improvement of safety procedures.
Research limitations/implications
This study helps to determine the safest and most reliable corrective measures to improve the reliability of safety barriers. In addition, it also helps to protect people inside and outside the company from all kinds of major industrial accidents. Among the limitations of this study is that the cost of corrective actions is not taken into account.
Originality/value
Our contribution is to propose an integrated approach that uses interval type-2 fuzzy sets and AHP method and emergency event tree analysis to handle uncertainty in the failure probability assessment of emergency safety barriers. In addition, the integration of fault tree analysis and fuzzy ordered averaging aggregation helps to improve the reliability of the fire-fighting system and optimize the corrective actions that can improve the safety practices in liquefied petroleum gas storage tanks.
Details