Search results

1 – 10 of 14
Article
Publication date: 19 April 2024

Hoda Sabry Sabry Othman, Salwa H. El-Sabbagh and Galal A. Nawwar

This study aims to investigate the behavior of the green biomass-derived copper (lignin/silica/fatty acids) complex, copper lignin/silica/fatty acids (Cu-LSF) complex, when…

Abstract

Purpose

This study aims to investigate the behavior of the green biomass-derived copper (lignin/silica/fatty acids) complex, copper lignin/silica/fatty acids (Cu-LSF) complex, when incorporated into the nonpolar ethylene propylene diene (EPDFM) rubber matrix, focusing on its reinforcing and antioxidant effect on the resulting EPDM composites.

Design/methodology/approach

The structure of the prepared EPDM composites was confirmed by Fourier-transform infrared spectroscopy, and the dispersion of the additive fillers and antioxidants in the EPDM matrix was investigated using scanning electron microscopy. Also, the rheometric characteristics, mechanical properties, swelling behavior and thermal gravimetric analysis of all the prepared EPDM composites were explored as well.

Findings

Results revealed that the Cu-LSF complex dispersed well in the nonpolar EPDM rubber matrix, in thepresence of coupling system, with enhanced Cu-LSF-rubber interactions and increased cross-linking density, which reflected on the improved rheological and mechanical properties of the resulting EPDM composites. From the various investigations performed in the current study, the authors can suggest 7–11 phr is the optimal effective concentration of Cu-LSF complex loading. Interestingly, EPDM composites containing Cu-LSF complex showed better antiaging performance, thermal stability and fluid resistance, when compared with those containing the commercial antioxidants (2,2,4-trimethyl-1,2-dihydroquinoline and N-isopropyl-N’-phenyl-p-phenylenediamine). These findings are in good agreement with our previous study on polar nitrile butadiene rubber.

Originality/value

The current study suggests the green biomass-derived Cu-LSF complex to be a promising low-cost and environmentally safe alternative filler and antioxidant to the hazardous commercial ones.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 May 2017

Salwa H. El-Sabbagh, Doaa Samir Mahmoud, Nivin M. Ahmed, A.A. Ward and Magdy Wadid Sabaa

This paper aims to study the role of organobentonite (OB) as a filler to improve the mechanical strength of styrene butadiene rubber (SBR). Organoclay was first prepared by…

Abstract

Purpose

This paper aims to study the role of organobentonite (OB) as a filler to improve the mechanical strength of styrene butadiene rubber (SBR). Organoclay was first prepared by modifying bentonite with different concentrations of N-cetyl-N, N, N-triethyl ammonium bromide. A series of SBR composites reinforced with OB were prepared using master-batch method.

Design/methodology/approach

The curing characteristics, mechanical properties, thermal behavior, dielectric properties and morphology of SBR/OB composites were investigated.

Findings

The elastic modulus and tensile strength of composites were increased by inclusion of OB, while the elongation at break was decreased, due to the increase in the degree of cross-linking density. Thermal gravimetric analysis revealed an improvement in the thermal stability of the composite containing 0.5 cation exchange capacity (CEC) OB, while the scanning electron micrographs confirmed more homogenous distribution of 0.5CEC OB in the rubber matrix. Also, SBR/0.5CEC OB showed low relative permittivity and electrical insulating properties.

Research limitations/implications

Bentonite has been recognized as a potentially useful filler in polymer matrix composites because of their high swelling capacity and plate morphology.

Practical implications

OB improves the cured rubber by increasing the tensile strength and the stiffness of the vulcanizate.

Social implications

Using cheap clay in rubber industry lead to production of low cost products with high efficiency.

Originality/value

The clay represents a convenient source because of their environmental compatibility. The low cost and easy availability make the modified clay used as fillers in rubber matrices, and the resultant composites can be applied in variety industrial of applications such as automobile industries, shoe outsoles, packaging materials and construction engineering.

Details

Pigment & Resin Technology, vol. 46 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 14 January 2022

Amir A. Abdelsalam, Salwa H. El-Sabbagh, Wael S. Mohamed, Jian Li, Lihua Wang, Hanafi Ismail, Ahmed Abdelmoneim and Mohsen A. Khozami

This paper aims to study the effects of various compatibilisers (maleic anhydride (MAH), methyl methacrylate/butyl acrylate emulsion lattice, and adhesion system (HRH)) on…

Abstract

Purpose

This paper aims to study the effects of various compatibilisers (maleic anhydride (MAH), methyl methacrylate/butyl acrylate emulsion lattice, and adhesion system (HRH)) on properties of carbon black (CB) filled with natural rubber (NR)/styrene-butadiene rubber (SBR)/ nitrile butadiene rubber (NBR) blends). A series of NR/SBR/NBR blends at a 30/30/40 blend ratio reinforced with 45 phr of CB was prepared using the master-batch method.

Design/methodology/approach

The tensile properties such as the tensile strength, stress at 100, 200 and 300% elongations, and elongation at break (EB)% were studied. Additionally, the morphological properties of compatibilised and uncompatibilised composites were compared to determine the optimal compatibiliser content.

Findings

The influence of compatibilisers appeared on all the properties studied. The properties of the blends compatibilised with prepared emulsion are very distinct from those of blends compatibilised with MAH and adhesion systems.

Research limitations/implications

Interactions among the different components of blends at the interfaces have a high impact on the interfacial properties of the rubber blend.

Practical implications

Compatibilisers significantly improve the physicomechanical properties of the resulting composites with the loading of investigated compatibilisers because of the uniform dispersion of CB in the rubber matrix.

Social implications

Using blends in the rubber industry leads to high-efficiency production of low-cost products.

Originality/value

The rubber blending has a significant positive effect on a wide range of applications such as structural applications, aerospace, military, packaging, tires and biomedical. Hence, improving the compatibility of blends will make new materials suitable for new applications.

Details

Pigment & Resin Technology, vol. 52 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 4 August 2020

Salwa H. El-Sabbagh, Nivin M. Ahmed, Doaa Samir Mahmoud and Wael S. Mohamed

The purpose of this paper is to evaluate the efficiency of commercial silica, silica fume-waste (SF) and modified silica fume-waste (mSF) as reinforcing filler in…

Abstract

Purpose

The purpose of this paper is to evaluate the efficiency of commercial silica, silica fume-waste (SF) and modified silica fume-waste (mSF) as reinforcing filler in acrylonitrile-butadiene rubber (NBR) and ethylene propylene diene monomer (EPDM) through the mixing process of rubber. The composites were prepared using different loadings of silica fume and commercial silica in EPDM and NBR composites. Structural characterization of silica and SF was done using X-ray fluorescence and scanning electron microscopy (SEM). The surface of silica fume waste was modified using poly methyl methacrylate/butyl acrylate through emulsion polymerization to increase the interaction between silica and rubber, then consequently better dispersion in rubber matrix was obtained. The mSF waste was characterized using FT-IR spectra and transmission electron microscopy.

Design/methodology/approach

The investigated rubber mixes and vulcanizates were evaluated by measuring the curing characteristics, mechanical testing, thermogravimetric analysis and morphological studies (SEM). The mechanical properties of composites including tensile strength, elongation at break and modulus were estimated and analyzed.

Findings

The results revealed that the composites (NBR and EPDM) containing mSF as filler exhibited better rheological and mechanical properties compared to unmodified silica waste and commercial silica. The SEM analysis indicated that the mSF was homogeneously dispersed through the surface of NBR and EPDM composites. Also, results showed that (NBR and EPDM) composites exhibited remarkable improvements in tensile strength, elongation at break and hardness in the presence of mSF; they also showed an increase in the thermal stability. This means that the treatment of surface SF can improve its dispersion in rubber.

Research limitations/implications

Silica cannot be applied in rubber matrix without surface modification because of their incompatibility; their dispersion is not good without surface modification.

Practical implications

The modified silica surface is considered as effective reinforcing filler which can replace other fillers because of its lower surface energy and enhanced intercalating behavior in rubber.

Social implications

This study is just a start in establishing rubber projects with wide applications in the industry and providing a cheap local product while preserving the quality and that is the use of factory waste, which helps in protecting the environment from pollution.

Originality/value

mSF is cheap with relatively high purity, which make rubber/mSF composites appear as new grade of material that can be used in different media rather than rubber.

Details

Pigment & Resin Technology, vol. 50 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 3 May 2022

Amir A. Abdelsalam, Salwa H. El-Sabbagh, Wael S. Mohamed and Mohsen A. Khozami

This study aims to investigate the swelling behavior, mechanical and thermal properties of ternary rubber blend composites prepared by melt blending based on carbon black…

Abstract

Purpose

This study aims to investigate the swelling behavior, mechanical and thermal properties of ternary rubber blend composites prepared by melt blending based on carbon black (CB)-filled natural rubber (NR)/styrene-butadiene rubber (SBR)/nitrile butadiene rubber (NBR) blends, containing a variety of compatibilizers. Various compatibilizers, maleic acid anhydride (MAH), prepared emulsion and adhesion system (HRH) were used. A series of NR/SBR/NBR blends at a 30/30/40 blend ratio reinforced with 45 phr of CB were prepared using the master-batch method.

Design/methodology/approach

Thermal aging properties of the composites characterized by their aging coefficient and retention in tensile and elongation at break (E.B. %). Thermal degradation of ternary rubber blend composites based on melt blending has been studied using thermogravimetric analysis.

Findings

The swelling coefficient decreased with increased compatibilizer loading. Results also showed that the tensile strength and E.B. (%) decreased with aging over the entire aging period. Additionally, the addition of compatibilizers into the ternary rubber blend composite had slightly improved the thermal stability.

Research limitations/implications

Interactions between the different components of blends at the interfaces have a high impact on the interfacial properties of the rubber blend.

Practical implications

Compatibilizers significantly improve the properties of the resulting composites with the loading of investigated compatibilizers because of the uniform dispersion of CB in the rubber matrix.

Social implications

Using blends in the rubber industry led to the high-efficiency production of low-cost products.

Originality/value

The rubber blending has a significant positive effect on a wide range of applications such as structural applications, aerospace, military, packaging, tires and biomedical, so improving the compatibility of blends will make new materials suitable for new applications.

Details

Pigment & Resin Technology, vol. 52 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 13 September 2021

Hoda Sabry Othman, Salwa H. El-Sabbagh and Galal A. Nawwar

In continuation to the previous work on copper (lignin/silica/fatty acids) (Cu-LSF) complex as a natural antioxidant/electrical conductivity agent for nitrile-butadiene rubber…

Abstract

Purpose

In continuation to the previous work on copper (lignin/silica/fatty acids) (Cu-LSF) complex as a natural antioxidant/electrical conductivity agent for nitrile-butadiene rubber (NBR), this study aims to perform further investigations for NBR vulcanizates loaded with different concentrations of Cu-LSF complex, including swelling behavior and hardness properties, as well as evaluating their thermal stability via thermogravimetric analysis.

Design/methodology/approach

The behavior of Cu-LSF complex in NBR matrix was compared with that of the standard commercial antioxidants (2,2,4-trimethyl-1,2-dihydroquinoline/N-isopropyl-N′-phenyl-p-phenylenediamine [TMQ/IPPD]).

Findings

Results revealed that Cu-LSF complex can act as an effective reinforcing and hardening agent, with exhibiting fluid resistance, even when compared with the commercial antioxidants. In comparison with the previous studies on its Zn and Ca analogues and their behavior in different rubber matrixes, Cu-LSF complex showed higher values of hardness and less susceptibility for swelling, respectively. Moreover, Cu-LSF antioxidant activity becomes in accordance with the previous work.

Originality/value

The new Cu-LSF complex could be used as a green alternative to the commercial antioxidants (TMQ/IPPD) with introducing further advantages to the rubber matrix, such as hardening, fluid resistance and thermal stability.

Details

Pigment & Resin Technology, vol. 51 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 5 October 2020

Doaa Samir Mahmoud, Medhat Lotfy Tawfic, Abdel Gawad Rabie and Salwa H. El-Sabbagh

The purpose of this paper is to prepare superabsorbent polymers (SAPs) based on acrylic acid, which is considered hygroscopic material to incorporate in rubber formulation, which…

Abstract

Purpose

The purpose of this paper is to prepare superabsorbent polymers (SAPs) based on acrylic acid, which is considered hygroscopic material to incorporate in rubber formulation, which results in producing moisten rubber that is used as roofing sheets.

Design/methodology/approach

SAPs were synthesized via free radical bulk polymerization technique using different content of cross-linker N, N'-methylenebisacrylamide and potassium persulfate. Differential scanning calorimeter, thermal gravimetric analysis, Fourier transform infrared spectroscopy and transmission electron microscopy were used to characterize SAPs and confirmed the formation of cross-linked hydrogel structure. The water absorbency and the gel fraction for sodium polyacrylate (NaPA) were investigated. Then, the influence of obtained NaPA on the swelling behavior of the prepared natural rubber (NR) compound has been discussed.

Findings

Absorption characteristics and gel fraction of NaPA were found to depend on the content of the cross-linker in the system. SAPs are used to improve the absorbance behavior and performance of the NR to produce, roofing sheets using in hot weather. The morphology of the obtained rubber compound was well-explained by using a scanning electron microscope.

Research limitations/implications

The research provides a simple way to produce moisten rubber that can be used as a roofing sheet to overcome warm weather.

Originality/value

Moisten rubber roofing sheets provide a low-cost option in many developing countries with hot climates, and thus, help save the environment from global warming.

Details

Pigment & Resin Technology, vol. 50 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 5 May 2015

Salwa H El-Sabbagh, Doaa S. Mahmoud, M. F. Zawrah, Nivin M. Ahmed and Magdy W. Sabaa

The purpose of this paper is to evaluate the efficiency of organobentonite (OB) as reinforcing filler in acrylonitrile-butadiene rubber (NBR). The composites were prepared using…

Abstract

Purpose

The purpose of this paper is to evaluate the efficiency of organobentonite (OB) as reinforcing filler in acrylonitrile-butadiene rubber (NBR). The composites were prepared using different loadings of OB and studying in details their properties. A series of OB was modified using surfactant N-cetyl-N, N, N-trimethyl ammonium bromide (CTAB) with concentrations 0.5, 1 and 2 cation exchange capacity (CEC) of bentonite.

Design/methodology/approach

The different bentonites were characterized using different analytical and spectro-photometric techniques, such as infra red, X-ray diffraction, thermogravimetric analysis and scanning electron microscopy, while rubber vulcanizate rheological, morphological, swelling and thermal properties were examined using different standard instrumental testing and methods.

Findings

The study revealed that the modification of bentonite using CTAB showed significant enhancement on NBR properties, and the optimum filler loading was 12 phr for both 0.5CEC OB and 2CEC OB. These modified bentonites improved reinforcing properties to NBR vulcanizates. Also, results showed that composites exhibited remarkable improvements in tensile strength, elongation at break and hardness in the presence of modified bentonite and also an increase in thermal stability.

Research limitations/implications

Na-B cannot be applied in rubber matrix without modification because it is incompatible with it.

Practical implications

The modified bentonite is considered as efficient reinforcing filler which can replace other fillers because it has lower surface energy and improved intercalating behaviour in rubber matrix.

Originality/value

These papered bentonites are cheap with relatively high purity, which make rubber/clay composites emerge as new class of material and can be used in different fields other than rubber.

Article
Publication date: 5 April 2021

Hoda Sabry Othman, Maher A. El-Hashash, S.H. El-Sabbagh, A.A. Ward and Galal A.M. Nawwar

Calcium and Zinc lignates were proven to be good antioxidants for rubber composites. The purpose of this paper is to evaluate the copper lignate antioxidant activity along with…

Abstract

Purpose

Calcium and Zinc lignates were proven to be good antioxidants for rubber composites. The purpose of this paper is to evaluate the copper lignate antioxidant activity along with evaluating its electrical conductivity in rubber composites.

Design/methodology/approach

The antioxidant activity of the Cu-LSF complex was compared with that of standard commercial antioxidant additives as a green alternative. The rheological characteristics, thermal aging and mechanical and electrical properties were evaluated for the NBR vulcanizates containing the different antioxidants in the presence or absence of coupling agents.

Findings

Results revealed that the Cu-LSF complex (5 phr) can function as a compatibilizing, antioxidant and electrical conductivity agent.

Originality/value

The new copper complex prepared from paper-pulping black liquor of wastes could be used as a green antioxidant and electrical conductivity agent in rubber composites.

Article
Publication date: 2 March 2015

Salwa H El-Sabbagh and Nivin M. Ahmed

This paper aims to express in detail the rheological, morphological and thermal properties of unpigmented and pigmented styrene-butadiene rubber composites with new prepared…

Abstract

Purpose

This paper aims to express in detail the rheological, morphological and thermal properties of unpigmented and pigmented styrene-butadiene rubber composites with new prepared inorganic pigment based on kaolin covered with a thin layer of calcium and magnesium oxides or mixed oxide of both together. These new pigments combine the properties of both their constituents (kaolin and metal oxides), which are a new trend in inorganic pigments called core-shell pigments. The pigments used for comparison are kaolin (K), CaO/kaolin (CaO/K), MgO/kaolin (MgO/K) and CaO.MgO/kaolin (CaO.MgO/K).

Design/methodology/approach

The different pigments were characterized using different analytical and spectrophotometric techniques, such as X-ray diffraction, scanning electron microscopy/energy dispersive X-ray and transmission electron microscopy, while rubber vulcanizates' rheological, morphological, swelling and thermal properties were examined using different standard and instrumental testing and methods.

Findings

The study revealed that there is a significant effect of the new prepared pigments on SBR properties, where the optimum pigment loading was 40 phr for CaO/kaolin, while it was 2.5 phr for MgO/kaolin. Studying the effect of different ratios of oxides on kaolin (5, 10 and 20 per cent), different loadings of these pigments ranging between 2.5 and 40 phr were done for each pigment. These modified kaolin or core-shell metal oxide/kaolin pigments imparted new and improved reinforcing properties to SBR vulcanizates.

Research limitations/implications

No research limitations were found.

Practical implications

Core-shell MgO/kaolin pigments are eco-friendly and can replace other expensive pigments that are usually used as fillers in the rubber industry with less expenses and comparable efficiency.

Originality/value

These new pigments are cheap and efficient and can be used in different fields other than rubber.

Details

Pigment & Resin Technology, vol. 44 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 14