Search results

1 – 3 of 3
To view the access options for this content please click here
Article

B. Mahanthesh, T. Brizlyn, SabirAli Shehzad and Gireesha B.J.

The nonlinear density thermal/solutal fluctuations in the buoyancy force term cannot be ignored when the temperature/concentration difference between the surface and fluid…

Abstract

Purpose

The nonlinear density thermal/solutal fluctuations in the buoyancy force term cannot be ignored when the temperature/concentration difference between the surface and fluid is large. The purpose of this paper is to investigate the nonlinear density fluctuations across a flowing fluid with heat mass transfer effects on a non-axial rotating plate. Therefore, the impact of nonlinear convection in the flow of Casson fluid over an oscillating plate has been analytically investigated.

Design/methodology/approach

The governing equations are modeled with the help of conservation equations of velocity, energy and concentration under the transient-state situation. The dimensional governing equations are non-dimensionalized by utilizing non-dimensional variables. Later, the subsequent non-dimensional problem has been solved analytically using Laplace transform method.

Findings

The effects of thermal Grashof number, solute Grashof number, nonlinear convection parameters, Casson fluid parameter, unsteady parameter, Prandtl number as well as Schmidt number on hydrodynamic, thermal and solute characteristics have been quantified. The numeric data for skin friction coefficient, Nusselt number and Sherwood number are presented. It is established the nonlinear convection aspect has a significant influence on heat and mass transport characteristics.

Originality/value

The effect of nonlinear convection in the dynamics of Casson fluid past an oscillating plate which is rotating non-axially is investigated for the first time.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

To view the access options for this content please click here
Article

G.K. Ramesh, G.S. Roopa, SabirAli Shehzad and S.U. Khan

The aim of present work is to study the flow and heat transport structures of hybrid nanoparticles in a moving material. Two types of hybrid nanoparticles have been chosen…

Abstract

Purpose

The aim of present work is to study the flow and heat transport structures of hybrid nanoparticles in a moving material. Two types of hybrid nanoparticles have been chosen namely Al2O3-Cu and Al2O3-Ag nanoparticles (90%) within 10% of pure water.

Design/methodology/approach

Leading governing equations are transformed through similarity technique and then computed for numerical illustration by applying RKF method.

Findings

The author observed that the skin friction value of Al2O3-Cu/water case is lesser in comparison to the values of Nusselt number for Al2O3-Ag/water nanoparticles.

Originality/value

There exist no such study which addressed such phenomenon.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

To view the access options for this content please click here
Article

S.U. Khan, Sabir Ali Shehzad and N. Ali

An increment in energy efficiency by employing nanoparticles is a hot topic of research in present era due to its abundant implications in modern engineering and…

Abstract

Purpose

An increment in energy efficiency by employing nanoparticles is a hot topic of research in present era due to its abundant implications in modern engineering and technological processes. Therefore, the current research analysis reported the viscoelastic nanofluid flow over porous oscillatory moving sheet in the presence of microorganisms. A rate-type fluid namely Maxwell fluid is employed with the addition of nanoparticles. The paper aims to discuss this issue.

Design/methodology/approach

First, acceptable dimensionless variables are defined to convert the system of dimensional form into the system of dimensionless forms. Later on, the self-similar solution of the boundary value problem is computed by using the homotopy analysis method. The obtained results of velocity, temperature, mass concentration and motile microorganism density profiles are interpreted through physical background.

Findings

The presence of both thermophoresis and Brownian motion parameters also improve the thermophysical features of non-Newtonian nanoparticles. It is also pointed out that the presence of porous medium and magnetic force enhances the nanoparticles concentration. Moreover, a weaker distribution of gyrotactic microorganism has been depicted with Peclet number and bioconvection Lewis parameter.

Originality/value

No such article exists in the literature yet.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 3 of 3