Search results

1 – 10 of 153
Article
Publication date: 25 February 2014

Shiuh-Chuan Her and Shou-Jan Liu

Carbon nanotubes (CNTs) with exceptional mechanical, thermal and electrical properties are considered to be ideal for reinforcing high-performance structures. The interfacial…

Abstract

Purpose

Carbon nanotubes (CNTs) with exceptional mechanical, thermal and electrical properties are considered to be ideal for reinforcing high-performance structures. The interfacial stresses between the CNTs and surrounding matrix are important phenomena which critically govern the mechanical properties of CNTs-reinforced nanocomposites. A number of methods have been proposed to investigate the stress transfer across the CNT/matrix interface, such as experimental measurement and molecular dynamics (MDs). Experimental tests are difficulty and expensive. MDs simulations, on the other hand, are computationally inefficient. The purpose of this paper is to present a reasonably simplified model. Incorporating the simplified model, the analytical expressions of the interface stresses including the shear stress and longitudinal normal stress are obtained.

Design/methodology/approach

The analytical model consists of two concentric cylinders, namely a single-walled carbon nanotube (SWCNT) cylinder and a matrix cylinder, as the representative volume element (RVE). The interfacial stress analysis is performed using the shear lag model for the axisymmetric RVE. Analytical solutions for the normal stresses in the SWCNT and matrix, and the interfacial shear stress across the SWCNT/matrix interface are obtained. The proposed model has a great ability to theoretical prediction of the stress transfer between the matrix and CNTs.

Findings

In order to demonstrate the simulation capabilities of the proposed model, parametric studies are conducted to investigate the effects of the volume fraction of SWCNT and matrix modulus on the stress transfer. The axial stress in the matrix is decreasing with the increase of the volume fraction and decrease of the matrix modulus. As a result of more loads can be transferred to the SWCNT for a large volume fraction and small matrix modulus. These results show that using a large volume fraction and a small matrix modulus improves the efficiency of the stress transfer from the matrix to the CNTs.

Originality/value

A simple but accurate model using a simplified 2D RVE for characterizing the stress transfer in CNT-reinforced nanocomposites is presented. The predictions from the current method compare favourably with those by existing experimental, analytical and computational studies. The simple and explicit expressions of the interfacial stresses provide valuable analysis tools accessible to practical users.

Details

Engineering Computations, vol. 31 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 January 2014

Mayank Kumar Rai, Rajesh Khanna and Sankar Sarkar

This paper aims to propose to study the control of tube parameters in terms of diameter, separation between adjacent tubes and length, on delay and power dissipation in…

Abstract

Purpose

This paper aims to propose to study the control of tube parameters in terms of diameter, separation between adjacent tubes and length, on delay and power dissipation in single-walled carbon nanotube (SWCNT) bundle interconnect for VLSI circuits.

Design/methodology/approach

The paper considers a distributed-RLC model of interconnect. A CMOS-inverter driving a distributed-RLC model of interconnect with load of 1 pF. A 0.1 GHz pulse of 2 ns rise time provides input to the CMOS-inverter. For SPICE simulation, predictive technology model (PTM) is used for the CMOS-driver. The performance of this setup is studied by SPICE simulation in 22 nm technology node. The results are compared with those of currently used copper interconnect.

Findings

SPICE simulation results reveal that delay increases with increase in separation between tubes and diameter whereas the reverse is true for power dissipation. The authors also find that SWCNT bundle interconnects are of lower delay than copper interconnect at various lengths and higher power dissipation due to dominance of larger capacitance of tube bundle.

Originality/value

The investigations show that tube parameters can control delay and this can also be utilized to decrease power dissipation in SWCNT bundle interconnects for VLSI applications.

Details

Microelectronics International, vol. 31 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 25 January 2011

Anand Y. Joshi, Satish C. Sharma and S.P. Harsha

The purpose of this paper is to explore the use of chiral single‐walled carbon nanotubes (SWCNTs) as mass sensors. Analysis of SWCNT with chiralities is performed using an…

Abstract

Purpose

The purpose of this paper is to explore the use of chiral single‐walled carbon nanotubes (SWCNTs) as mass sensors. Analysis of SWCNT with chiralities is performed using an atomistic finite element model based on a molecular structural mechanics approach.

Design/methodology/approach

The cantilever carbon nanotube (CNT) is modeled by considering it as a space frame structure similar to three‐dimensional beams and point masses. The elastic properties of the beam element are calculated by considering mechanical characteristics of covalent bonds between the carbon atoms in the hexagonal lattice. The mass of each beam element is assumed as point mass at nodes coinciding with carbon atoms. An atomistic simulation approach is used to find the natural frequencies and to study the effects of defect like atomic vacancies in CNTs on the resonant frequency. The migration of the atomic vacancies along the length is observed for different chiralities.

Findings

A reduction in the simulated natural frequency is observed with the maximum value occurring, when the vacancy is found nearer to the fixed end. It is quite evident from the simulation results that the effect of vacancies is significant, and the effect diminishes at 10−2 femtograms mass. Using the higher modes of vibration of SWCNT‐based mass sensors, the amount and the position of the mass on the nanotube can be identified.

Originality/value

CNT have been used as mass sensors extensively. The present approach is focused to explore the use of chiral SWCNT as sensing device with vacancy defect in it. The variation of the atomic vacancies in CNT along the length has been taken and is analyzed for different chiralities. The effects of defect like atomic vacancies in CNTs on the resonant frequency have been analyzed and observed that the maximum reduction in natural frequency occurs when the vacancy is found nearer to the fixed end due to large stiffness variation.

Details

Sensor Review, vol. 31 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 22 February 2024

Fatemeh Mollaamin and Majid Monajjemi

Bisphosphonate (BP) medications can be applied to prohibit the damage of bone density and the remedy of bone illnesses such as osteoporosis. As the metal chelating of phosphonate…

Abstract

Purpose

Bisphosphonate (BP) medications can be applied to prohibit the damage of bone density and the remedy of bone illnesses such as osteoporosis. As the metal chelating of phosphonate groups are nearby large with six O atoms possessing the high negative charge, these compounds are active toward producing the chelated complexes through drug design method. BP agents have attracted much attention for the clinical treatment of some skeletal diseases depicted by enhancing of osteoclast-mediated bone resorption.

Design/methodology/approach

In this work, it has been accomplished the CAM-B3LYP/6–311+G(d, p)/LANL2DZ to estimate the susceptibility of SWCNT for adsorbing alendronate, ibandronate, neridronate and pamidronate chelated to two metal cations of 2Mg2+, 2Ca2+, 2Sr2+ through nuclear magnetic resonance and thermodynamic parameters. Therefore, the data has explained that the feasibility of using SWCNT and BP agents becomes the norm in metal chelating of drug delivery system which has been selected through alendronate → 2X, ibandronate → 2X, neridronate → 2X and pamidronate → 2X (X = Mg2+/Ca2+/Sr2+) complexes.

Findings

The thermodynamic results have exhibited that the substitution of 2Ca2+ cation by 2Sr2+ cation in the structure of bioactive glasses can be efficient for treating vertebral complex fractures. However, it has been observed the most fluctuation in the Gibbs free energy for BPs → 2Sr2+ at 300 K. Furthermore, Monte Carlo simulation has resulted by increasing the dielectric constant in the aqueous medium can enhance the stability and efficiency of BP drugs for preventing the loss of bone density and treating the osteoporosis.

Originality/value

According to this research, by incorporation of chelated 2Mg2+, 2Ca2+ and 2Sr2+ cations to BP drugs adsorbed onto (5, 5) armchair SWCNT, the network compaction would increase owing to the larger atomic radius of Sr2+ cation rather than Ca2+ and Mg2+, respectively.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 14 January 2014

Malathy Batumalay, F. Ahmad, Asiah Lokman, A.A. Jasim, Sulaiman Wadi Harun and H. Ahmad

A simple tapered plastic optical fiber (POF) sensor is proposed and demonstrated for measurement of uric acid concentrations in de-ionized water. The paper aims to discuss these…

Abstract

Purpose

A simple tapered plastic optical fiber (POF) sensor is proposed and demonstrated for measurement of uric acid concentrations in de-ionized water. The paper aims to discuss these issues.

Design/methodology/approach

The sensor operates based on intensity modulation technique as the tapered POF probe which was coated by a single walled carbon nonotubes polyethylene oxide (SWCNT-PEO) composite is immersed into the uric acid solution. The probe was fabricated using an etching method and has a waist diameter of 0.46 mm and tapering length of 10 mm.

Findings

As the concentration varies from 0 to 500 ppm, the output voltage of the sensor increases linearly from 6.13 to 7.35 mV with a sensitivity of 0.0023 mV/% and a linearity of more than 97.20 percent. The SWCNT-PEO composite coating increases the sensitivity of the proposed sensor due to the effective cladding refractive index, which increases with the coating and thus allows more light to be transmitted from the tapered fiber.

Originality/value

This is the first demonstration of the tapered POF sensor for measurement of uric acid concentrations in de-ionized water.

Details

Sensor Review, vol. 34 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 5 March 2018

Maria Anna De Rosa, Maria Lippiello and Stefania Tomasiello

The purpose of the present paper is to investigate the nonconservative instability of a single-walled carbon nanotube (SWCNT) with an added mass through nonlocal theories. The…

Abstract

Purpose

The purpose of the present paper is to investigate the nonconservative instability of a single-walled carbon nanotube (SWCNT) with an added mass through nonlocal theories. The governing equations are discretized by means of the differential quadrature (DQ) rules, as introduced by Bellman and Casti. DQ rules have been largely used in engineering and applied sciences. Recently, they were applied to enhance some numerical schemes, such as step-by-step integration schemes and Picard-like numerical schemes.

Design/methodology/approach

In the present paper, the DQ rules are used to investigate the nonconservative instability of a SWCNT through nonlocal theories.

Findings

To show the sensitivity of the SWCNT to the values of added mass and the influence of nonlocal parameter on the fundamental frequencies values, some numerical examples have been performed and discussed. Yet, the effect of the different boundary conditions on the instability behaviour has been investigated. The validity of the present model has been confirmed by comparing some results against the ones available in literature.

Originality/value

Applying the nonlocal elasticity theory, this paper presents a re-formulation of Hamilton’s principle for the free vibration analysis of a uniform Euler–Bernoulli nanobeam. The main purpose of this paper is to investigate the free vibration response of an SWCNT with attached mass and for various values of small scale effects.

Details

Engineering Computations, vol. 35 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 24 September 2020

Oktay Çiçek, A. Filiz Baytaş and A. Cihat Baytaş

The purpose of this study is to numerically analyze the mixed convection and entropy generation in an annulus with a rotating heated inner cylinder for single-wall carbon nanotube…

Abstract

Purpose

The purpose of this study is to numerically analyze the mixed convection and entropy generation in an annulus with a rotating heated inner cylinder for single-wall carbon nanotube (SWCNT)–water nanofluid flow using local thermal nonequilibrium (LTNE) model. An examination of the system behavior is presented considering the heat-generating solid phase inside the porous layer partly filled at the inner surface of the outer cylinder.

Design/methodology/approach

The discretized governing equations for nanofluid and porous layer by means of the finite volume method are solved by using the SIMPLE algorithm.

Findings

It is found that the buoyancy force and rotational effect have an important impact on the change of the strength of streamlines and isotherms for nanofluid flow. The minimum average Nusselt number on the inner cylinder is obtained at Ra$_E$ = 10$^4$, and the minimum total entropy generation is found at Re = 400 for given parameters. The entropy generation minimization is determined in case of different nanoparticle volume fractions. It is observed that at the same external Rayleigh numbers, the LTNE condition obtained with internal heat generation is very different from that without heat generation.

Originality/value

To the best of the authors’ knowledge, there is no previous paper presenting mixed convection and entropy generation of SWCNT–water nanofluid in a porous annulus under LTNE condition. The addition of nanoparticles to based fluid leads to a decrease in the value of minimum total entropy generation. Thus, using nanofluid has a significant role in the thermal design and optimization of heat transfer applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 February 2019

Soheil Oveissi, Davood Toghraie, S. Ali Eftekhari and Ali J. Chamkha

This study aims to study the transverse vibration and instabilities of the fluid-conveying single-walled carbon nanotubes (CNTs). To this purpose, the Euler–Bernoulli beam model…

Abstract

Purpose

This study aims to study the transverse vibration and instabilities of the fluid-conveying single-walled carbon nanotubes (CNTs). To this purpose, the Euler–Bernoulli beam model is used. Also, the surface effects, small-size effects of the both fluid and structure and two different elastic mediums viscoelastic and Pasternak elastic are investigated.

Design/methodology/approach

To consider the nano-scale for the CNT, the strain-inertia gradient theory is used and to solve the governing equation of motion for the system, the Galerkin’s method is used. The effect of the flow velocity, aspect ratio, characteristic lengths of the mentioned theory, effects of Knudsen number and effects of the Winkler, the Pasternak elastic and the viscoelastic medium on the frequencies and stabilities of the system are studied. The effects of the above parameters on the vibrational behavior are investigated both separately and simultaneously.

Findings

The results show that the critical flow velocity value is increased as the aspect ratio, characteristic lengths, Winkler modulus, shear and damping factors increase. Also, the critical flow velocity is increased by considering the surface effects. In addition, the consequence of increase in the nano-flow-size effects (Knudsen number) is decreasing the critical flow velocity. Moreover, it can be observed that the effect of the shear factor on increasing the critical flow velocity is different from the rest of parameters.

Originality/value

Use of Timoshenko and modified couple stress theories and taking into account Von-Karman expressions for investigating the nonlinear vibrations of triple-walled CNTs buried within Pasternak foundation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 August 2015

Stelios K. Georgantzinos, G. I. Giannopoulos, P. K. Pierou and N. K. Anifantis

A computational structural mechanics approach, based on the exclusive use of standard bar elements is utilized in order to investigate the elastic stability of single-walled…

Abstract

Purpose

A computational structural mechanics approach, based on the exclusive use of standard bar elements is utilized in order to investigate the elastic stability of single-walled carbon nanotubes (SWCNTs) with atom vacancy defects under axial compressive loads. The paper aims to discuss this issue.

Design/methodology/approach

The proposed model uses three dimensional, two nodded, linear truss finite elements of three degrees of freedom per node to represent the force field appearing between carbon atoms due to the basic interatomic interactions.

Findings

Numerical results concerning the critical forces which cause instability of pristine nanotubes are compared with corresponding data given in the open literature in the effort to demonstrate the good accuracy of the method. Then, it is assumed that SWCNTs present-specific structural defects defined by their length, width, orientation and longitudinal position. The influence of these four geometric parameters of the imperfections considered on the stability of SWCNTs is investigated in detail and essential conclusions are revealed.

Originality/value

To the authors’ best knowledge, is the first time that the specific method is introduced for the prediction of buckling behavior of defective SWCNTs. The structural defect here is considered as atoms vacancy that forms a like-crack defect having a specific length, width, orientation and position along the nanotube length.

Details

International Journal of Structural Integrity, vol. 6 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 2 May 2017

Syed Zulfiqar Ali Zaidi, Syed Tauseef Mohyud-din and Bandar Bin-Mohsen

The purpose of this study is to conduct a comparative investigation for incompressible electrically conducting nanofluid fluid through wall jet. Single-walled carbon nanotubes…

Abstract

Purpose

The purpose of this study is to conduct a comparative investigation for incompressible electrically conducting nanofluid fluid through wall jet. Single-walled carbon nanotubes (SWCNTs) and multiple-walled carbon nanotubes (MWCNTs) are considered as the nanoparticles. To record the effect of Lorentz forces, a magnetic field is applied normally with the assumption that the induced magnetic field is negligible.

Design/methodology/approach

Boundary layer approximation is used to convert governing equations into ordinary differential equations along with appropriate boundary conditions. To obtain the results, used homotopy analysis method (HAM) has been used as an analytical technique and to validate the obtained results a famous numerical Runge–Kutta–Fehlberg method is also exploited. It has been observed that the results obtained through both of the methods are in excellent agreement with exact solution.

Findings

The Hartmann number is used as controlling parameter for velocity and temperature profile. That can be recorded as its extended values help to normalize the velocity, whereas it controls the rapid increase in temperature. The temperature profile is boosted by increasing the value of the Biot number, a physical parameter. Similarly, it also increases for an increased percentage of volume fraction of particles (SWCNTs/MWCNTs). The Hartmann number plays an important role in decreasing local skin friction coefficient. The influence of the Biot number and volume fraction of nanoparticles caused similar increasing effects on the local Nusselt number. Nanoparticles of the form SWCNT provide better heat transfer as compared to MWCNTs. Influence of the Biot number and volume fraction of nanoparticles caused similar increasing effects on the local Nusselt number. Nanoparticles of the form SWCNT provide better heat transfer as compared to MWCNTs.

Originality/value

To gain insight into the problem, the effects of various emerging parameters and physical quantities such as Biot number, Nusselt number and skin friction coefficient, have been explored.

Details

Engineering Computations, vol. 34 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 153