Search results

1 – 10 of 205
Article
Publication date: 5 March 2018

Ling Zhou, Ling Bai, Wei Li, Weidong Shi and Chuan Wang

The purpose of this study is to validate the different turbulence models using in the numerical simulation of centrifugal pump diffuser. Computational fluid dynamics (CFD) has…

Abstract

Purpose

The purpose of this study is to validate the different turbulence models using in the numerical simulation of centrifugal pump diffuser. Computational fluid dynamics (CFD) has become the main method to study the pump inner flow patterns. It is important to understand the differences and features of the different turbulence models used in turbomachinery.

Design/methodology/approach

The velocity flow fields in a compact return diffuser under different flow conditions are studied and compared between CFD and particle image velocimetry (PIV) measurements. Three turbulence models are used to solve the steady flow field using high-quality fine structured grids, including shear stress transport (SST) k-w model, detached-eddy simulation (DES) model and SST k-w model with low-Re corrections.

Findings

SST k-w model with low-Re correction gives better results compared to DES and SST k-w model, and gives a good predication about the vortex core position under strong part-loading conditions.

Originality/value

A special test rig is designed to carry out the 2D PIV measurements under high rotating speed of 2850 r/min, and the PIV results are used to validate the CFD results.

Details

Engineering Computations, vol. 35 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 December 2017

Chunbao Liu, Weiyang Bu, Dong Xu, Yulong Lei and Xuesong Li

This paper aims to improve performance prediction and to acquire more detailed flow structures so as to analyze the turbulence in complex rotor-stator flow.

Abstract

Purpose

This paper aims to improve performance prediction and to acquire more detailed flow structures so as to analyze the turbulence in complex rotor-stator flow.

Design/methodology/approach

Hydraulic retarder as typical fluid machinery was numerically investigated by using hybrid Reynolds-averaged Navier–Stokes (RANS)/large eddy simulation (LES) models CIDDES Algebraic Wall-Modeled Large Eddy Simulation (LES) (WMLES) S-Ω and dynamic hybrid RANS/LES (DHRL). The prediction results were compared and analyzed with a RANS model shear stress transport (SST) k-omega which was a recommended choice in engineering.

Findings

The numerical results were verified by experiment and indicated that the predicted values for three hybrid turbulence models were more accurate. Then, the transient flow field was further analyzed visually in terms of turbulence statistics, Reynolds number, pressure-streamline, vortex structure and eddy viscosity ratio. The results indicated that HRL approaches could capture unsteady flow phenomena.

Practical implications

This study achieves both in performance prediction improvement and better flow mechanism understanding. The computational fluid dynamics (CFD) could be used instead of flow visualization to a certain extent. The improved CFD method, the fine computational grid and the reasonable simulation settings jointly enhance the application of CFD in the rotor-stator flow.

Originality/value

The improvement was quite encouraging compared with the reported literatures, contributing to the CFD playing a more important role in the flow machinery. DHRL provided the detailed explanation of flow transport between rotor and stator, which was not reported before. Through it, the flow mechanism can be better understood.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 November 2021

M. R. Nived, Bandi Sai Mukesh, Sai Saketha Chandra Athkuri and Vinayak Eswaran

This paper aims to conduct, a detailed investigation of various Reynolds averaged Navier–Stokes (RANS) models to study their performance in attached and separated flows. The…

Abstract

Purpose

This paper aims to conduct, a detailed investigation of various Reynolds averaged Navier–Stokes (RANS) models to study their performance in attached and separated flows. The turbulent flow over two airfoils, namely, National Advisory Committee for Aeronautics (NACA)-0012 and National Aeronautics and Space Administration (NASA) MS(1)-0317 with a static stall setup at a Reynolds number of 6 million, is chosen to investigate these models. The pre-stall and post-stall regions, which are in the range of angles of attack 0°–20°, are simulated.

Design/methodology/approach

RANS turbulence models with the Boussinesq approximation are the most commonly used cost-effective models for engineering flows. Four RANS models are considered to predict the static stall of two airfoils: Spalart–Allmaras (SA), Menter’s kω shear stress transport (SST), k – kL and SA-Bas Cakmakcioglu modified (BCM) transition model. All the simulations are performed on an in-house unstructured-grid compressible flow solver.

Findings

All the turbulence models considered predicted the lift and drag coefficients in good agreement with experimental data for both airfoils in the attached pre-stall region. For the NACA-0012 airfoil, all models except the SA-BCM over-predicted the stall angle by 2°, whereas SA-BCM failed to predict stall. For the NASA MS(1)-0317 airfoil, all models predicted the lift and drag coefficients accurately for attached flow. But the first three models showed even further delayed stall, whereas SA-BCM again did not predict stall.

Originality/value

The numerical results at high Re obtained from this work, especially that of the NASA MS(1)-0317, are new to the literature in the knowledge of the authors. This paper highlights the inability of RANS models to predict the stall phenomenon and suggests a need for improvement in modeling flow physics in near- and post-stall flows.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 2015

Jian Wang, Yong Wang, Houlin Liu, Haoqin Huang and Linglin Jiang

The purpose of this paper is to study the unsteady caivitating flows in centrifugal pump, especially for improving the turbulence model to obtain highly resolution results-capable…

Abstract

Purpose

The purpose of this paper is to study the unsteady caivitating flows in centrifugal pump, especially for improving the turbulence model to obtain highly resolution results-capable of predicting the cavitation inception, shedding off and collapse procedures.

Design/methodology/approach

Both numerical simulations and experimental visualizations were performed in the present paper. An improved RCD turbulence models was proposed by considering three corrected methods: the rotating corrected method, the compressible corrected method and the turbulent viscosity corrected method. Unsteady RANS computations were conducted to compare with the experiments.

Findings

The comparison of pump cavitation performance showed that the RCD turbulence model obtained better performance both in non-cavitation and cavitation conditions. The visualization of the cavitation evolution was recorded to validate the unsteady simulations. Good agreement was noticed between calculations and visualizations. It is indicated the RCD model can successfully capture the bubbles detachment and collapse at the rear of the cavity region, since it effectively reduces the eddy viscosity in the multiphase region of liquid and vapor. Furthermore, the eddy viscosity, the instantaneous pressure and density distribution were investigated. The effectiveness of the compressibility was found. Meanwhile, the influence of the rotating corrected method on prediction was explored. It is found that the RCD model solved more unsteady flow characteristics.

Originality/value

The current work presented a turbulence model which was much more suitable for predicting the cavitating flow in centrifugal pump.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 July 2019

Massoud Tatar, Mojtaba Tahani and Mehran Masdari

In this paper, the applicability of shear stress transport k-ω model along with the intermittency concept has been investigated over pitching airfoils to capture the laminar…

Abstract

Purpose

In this paper, the applicability of shear stress transport k-ω model along with the intermittency concept has been investigated over pitching airfoils to capture the laminar separation bubble (LSB) position and the boundary layer transition movement. The effect of reduced frequency of oscillations on boundary layer response is also examined.

Design/methodology/approach

A two-dimensional computational fluid dynamic code was developed to compute the effects of unsteadiness on LSB formation, transition point movement, pressure distribution and lift force over an oscillating airfoil using transport equation of intermittency accompanied by the k-ω model.

Findings

The results indicate that increasing the angle of attack over the stationary airfoil causes the LSB size to shorten, leading to a rise in wall shear stress and pressure suction peak. In unsteady cases, both three- and four-equation models are capable of capturing the experimentally measured transition point well. The transition is delayed for an unsteady boundary layer in comparison with that for a static airfoil at the same angle of attack. Increasing the unsteadiness of flow, i.e. reduced frequency, moves the transition point toward the trailing edge of the airfoil. This increment also results in lower static pressure suction peak and hence lower lift produced by the airfoil. It was also found that the fully turbulent k-ω shear–stress transport (SST) model cannot capture the so-called figure-of-eight region in lift coefficient and the employment of intermittency transport equation is essential.

Practical implications

Boundary layer transition and unsteady flow characteristics owing to airfoil motion are both important for many engineering applications including micro air vehicles as well as helicopter blade, wind turbine and aircraft maneuvers. In this paper, the accuracy of transition modeling based on intermittency transport concept and the response of boundary layer to unsteadiness are investigated.

Originality/value

As a conclusion, the contribution of this paper is to assess the ability of intermittency transport models to predict LSB and transition point movements, static pressure distribution and aerodynamic lift variations and boundary layer flow pattern over dynamic pitching airfoils with regard to oscillation frequency effects for engineering problems.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 30 December 2021

Xiaolong Yang, Zhuangzhi Liu and Yu Hu

The purpose of this paper is to investigate the mechanism and performance of a potential strategy, which is to enhance turbulence to carry out drag reduction for heavy trucks.

95

Abstract

Purpose

The purpose of this paper is to investigate the mechanism and performance of a potential strategy, which is to enhance turbulence to carry out drag reduction for heavy trucks.

Design/methodology/approach

Enhancing turbulence deflector (ETD) was placed on the roof surface of an ground transportation system (GTS) to investigate the drag reduction mechanism of enhancing turbulence. Transition shear-stress transport improved delay detach eddy simulation model was adopted to simulate the unsteady small-scale flow around the ETD.

Findings

By optimizing the three influencing factors, diameter, streamwise length and streamwise position, the optimized ETD has achieved a maximum drag reduction of 7.04%. The analysis of flow field results shows that enhancing turbulence can effectively suppress flow separation and reduce the negative pressure intensity in the wake region of GTS.

Originality/value

The present work provides another potential possibility for the improvement of the aerodynamic performance of heavy trucks.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 June 2020

Taurista Perdana Syawitri, Yufeng Yao, Jun Yao and Budi Chandra

The aim of this paper is to assess the ability of a stress-blended eddy simulation (SBES) turbulence model to predict the performance of a three-straight-bladed vertical axis wind…

Abstract

Purpose

The aim of this paper is to assess the ability of a stress-blended eddy simulation (SBES) turbulence model to predict the performance of a three-straight-bladed vertical axis wind turbine (VAWT). The grid sensitivity study is conducted to evaluate the simulation accuracy.

Design/methodology/approach

The unsteady Reynolds-averaged Navier–Stokes equations are solved using the computational fluid dynamics (CFD) technique. Two types of grid topology around the blades, namely, O-grid (OG) and C-grid (CG) types, are considered for grid sensitivity studies.

Findings

With regard to the power coefficient (Cp), simulation results have shown significant improvements of predictions using compared to other turbulence models such as the k-e model. The Cp distributions predicted by applying the CG mesh are in good agreement with the experimental data than that by the OG mesh.

Research limitations/implications

The current study provides some new insights of the use of SBES turbulence model in VAWT CFD simulations.

Practical implications

The SBES turbulence model can significantly improve the numerical accuracy on predicting the VAWT performance at a lower tip speed ratio (TSR), which other turbulence models cannot achieve. Furthermore, it has less computational demand for the finer grid resolution used in the RANS-Large Eddy Simulation (LES) “transition” zone compared to other hybrid RANS-LES models.

Originality/value

To authors’ knowledge, this is the first attempt to apply SBES turbulence model to predict VAWT performance resulting for accurate CFD results. The better prediction can increase the credibility of computational evaluation of a new or an improved configuration of VAWT.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 June 2021

Stavros N. Leloudas, Georgios N. Lygidakis, Argiris I. Delis and Ioannis K. Nikolos

This study aims to feature the application of the artificial compressibility method (ACM) for the numerical prediction of two-dimensional (2D) axisymmetric swirling flows.

Abstract

Purpose

This study aims to feature the application of the artificial compressibility method (ACM) for the numerical prediction of two-dimensional (2D) axisymmetric swirling flows.

Design/methodology/approach

The respective academic numerical solver, named IGal2D, is based on the axisymmetric Reynolds-averaged Navier–Stokes (RANS) equations, arranged in a pseudo-Cartesian form, enhanced by the addition of the circumferential momentum equation. Discretization of spatial derivative terms within the governing equations is performed via unstructured 2D grid layouts, with a node-centered finite-volume scheme. For the evaluation of inviscid fluxes, the upwind Roe’s approximate Riemann solver is applied, coupled with a higher-order accurate spatial reconstruction, whereas an element-based approach is used for the calculation of gradients required for the viscous ones. Time integration is succeeded through a second-order accurate four-stage Runge-Kutta method, adopting additionally a local time-stepping technique. Further acceleration, in terms of computational time, is achieved by using an agglomeration multigrid scheme, incorporating the full approximation scheme in a V-cycle process, within an efficient edge-based data structure.

Findings

A detailed validation of the proposed numerical methodology is performed by encountering both inviscid and viscous (laminar and turbulent) swirling flows with axial symmetry. IGal2D is compared against the commercial software ANSYS fluent – by using appropriate metrics and characteristic flow quantities – but also against experimental measurements, confirming the proposed methodology’s potential to predict such flows in terms of accuracy.

Originality/value

This study provides a robust methodology for the accurate prediction of swirling flows by combining the axisymmetric RANS equations with ACM. In addition, a detailed description of the convective flux Jacobian is provided, filling a respective gap in research literature.

Article
Publication date: 16 November 2018

Filip Wasilczuk, Pawel Flaszynski, Piotr Kaczynski, Ryszard Szwaba, Piotr Doerffer and Krzysztof Marugi

The purpose of the study is to measure the mass flow in the flow through the labyrinth seal of the gas turbine and compare it to the results of numerical simulation. Moreover the…

Abstract

Purpose

The purpose of the study is to measure the mass flow in the flow through the labyrinth seal of the gas turbine and compare it to the results of numerical simulation. Moreover the capability of two turbulence models to reflect the phenomenon will be assessed. The studied case will later be used as a reference case for the new, original design of flow control method to limit the leakage flow through the labyrinth seal.

Design/methodology/approach

Experimental measurements were conducted, measuring the mass flow and the pressure in the model of the labyrinth seal. It was compared to the results of numerical simulation performed in ANSYS/Fluent commercial code for the same geometry.

Findings

The precise machining of parts was identified as crucial for obtaining correct results in the experiment. The model characteristics were documented, allowing for its future use as the reference case for testing the new labyrinth seal geometry. Experimentally validated numerical model of the flow in the labyrinth seal was developed.

Research limitations/implications

The research studies the basic case, future research on the case with a new labyrinth seal geometry is planned. Research is conducted on simplified case without rotation and the impact of the turbine main channel.

Practical implications

Importance of machining accuracy up to 0.01 mm was found to be important for measuring leakage in small gaps and decision making on the optimal configuration selection.

Originality/value

The research is an important step in the development of original modification of the labyrinth seal, resulting in leakage reduction, by serving as a reference case.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 29 April 2014

Onur Tuncer and Bertan Kaynaroglu

– The purpose of this paper is to assess the validity of Weller's b-ω flamelet model for practical swirl-stabilized combustion applications.

297

Abstract

Purpose

The purpose of this paper is to assess the validity of Weller's b-ω flamelet model for practical swirl-stabilized combustion applications.

Design/methodology/approach

Swirl-stabilized premixed flame behavior is investigated utilizing an atmospheric combustor test rig. Swirl number of the flow is 0.74 with a cold flow Reynolds number of 19,400 based on the hydraulic diameter at the inlet pipe. Operating condition corresponds to an equivalence ratio of 0.7 at a thermal load of 20.4 kW. Reacting flow was seeded with TiO2 particles, and velocity distribution at the center plane was measured utilizing particle image velocimetry. These results serve as a validation dataset for numerical simulations. An open-source computational fluid dynamics (CFD) code library (OpenFOAM) is used for numerical computations. These unsteady Reynolds averaged Navier Stokes (RANS) computations were performed at the same load condition corresponding to experimental data. Parallel numerical simulations were carried out on 128 processor cores. To resolve turbulence, Menter's k-ω shear stress transport model was utilized; flame behavior, on the other hand, was described by Weller's b-ω flamelet model. A block-structured all-hexahedral mesh was used.

Findings

It is observed that two counter-rotating vortices in the main recirculation zone are responsible for flame stabilization. Weak secondary recirculation zones are also present at the sides above the dump plane. Flame front location was inferred from Mie scattering images. Experimental findings show that the flame anchors both on the tip of the center body and also at the rim of the outlet pipe. Numerical simulations capture the complex interactions between the flame and the turbulent flow. These results qualitatively agree with the flame structure observed experimentally.

Practical implications

Swirl-stabilized combustion systems are used in many practical applications ranging from aeroengines to land-based power generation systems. There are implications regarding the understanding of these combustion systems.

Social implications

Better understanding of combustion systems contributes to better performing turbine engines and reduced emissions with implications for the entire society.

Originality/value

The paper provides experimental insight into the application of a combustion model for a flame configuration of practical interest.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 10 of 205