Search results

1 – 2 of 2
Article
Publication date: 1 May 1992

SRINIVAS KODIYALAM, S. ADALI and I.S. SADEK

The optimal thickness distribution of a two‐span continuous beam is determined with the objectives of minimizing the maximum stress, maximizing the fundamental frequency and…

Abstract

The optimal thickness distribution of a two‐span continuous beam is determined with the objectives of minimizing the maximum stress, maximizing the fundamental frequency and frequency separation between adjacent frequencies. The self‐weight of the beam is included in the computations. The multiobjective design problem is solved by using the concept of Pareto optimality. The beam thickness is approximated by constant splines. The stress distribution and the frequencies are determined by the finite element method. The optimization of the beam is carried out by the feasible direction method and by employing a quadratic approximation of the thickness function. Numerical results are given for two‐objective design problems. Optimal trade‐off curves, thickness distributions and stress distributions of optimally designed beams are presented in graphical form. The effects of self‐weight and different design objectives on the thickness distribution are investigated.

Details

Engineering Computations, vol. 9 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 31 July 2023

Shekhar Srivastava, Rajiv Kumar Garg, Anish Sachdeva, Vishal S. Sharma, Sehijpal Singh and Munish Kumar Gupta

Gas metal arc-based directed energy deposition (GMA-DED) process experiences residual stress (RS) developed due to heat accumulation during successive layer deposition as a…

Abstract

Purpose

Gas metal arc-based directed energy deposition (GMA-DED) process experiences residual stress (RS) developed due to heat accumulation during successive layer deposition as a significant challenge. To address that, monitoring of transient temperature distribution concerning time is a critical input. Finite element analysis (FEA) is considered a decisive engineering tool in quantifying temperature and RS in all manufacturing processes. However, computational time and prediction accuracy has always been a matter of concern for FEA-based prediction of responses in the GMA-DED process. Therefore, this study aims to investigate the effect of finite element mesh variations on the developed RS in the GMA-DED process.

Design/methodology/approach

The variation in the element shape functions, i.e. linear- and quadratic-interpolation elements, has been used to model a single-track 10-layered thin-walled component in Ansys parametric design language. Two cases have been proposed in this study: Case 1 has been meshed with the linear-interpolation elements and Case 2 has been meshed with the combination of linear- and quadratic-interpolation elements. Furthermore, the modelled responses are authenticated with the experimental results measured through the data acquisition system for temperature and RS.

Findings

A good agreement of temperature and RS profile has been observed between predicted and experimental values. Considering similar parameters, Case 1 produced an average error of 4.13%, whereas Case 2 produced an average error of 23.45% in temperature prediction. Besides, comparing the longitudinal stress in the transverse direction for Cases 1 and 2 produced an error of 8.282% and 12.796%, respectively.

Originality/value

To avoid the costly and time-taking experimental approach, the experts have suggested the utilization of numerical methods in the design optimization of engineering problems. The FEA approach, however, is a subtle tool, still, it faces high computational cost and low accuracy based on the choice of selected element technology. This research can serve as a basis for the choice of element technology which can predict better responses in the thermo-mechanical modelling of the GMA-DED process.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 2 of 2