Search results

1 – 10 of 20
Article
Publication date: 4 August 2017

Vadims Goremikins, Lukas Blesak, Josef Novak and Frantisek Wald

This work aims to present an experimental study of steel fibre-reinforced concrete (SFRC) subjected to high temperature, especially focusing on residual behaviour.

Abstract

Purpose

This work aims to present an experimental study of steel fibre-reinforced concrete (SFRC) subjected to high temperature, especially focusing on residual behaviour.

Design/methodology/approach

Compressive strength and split tensile strength of SFRC cubes and ultimate bending strength of prisms were evaluated under ambient and elevated temperatures. The specimens were heated by ceramic heaters and then repacked for testing.

Findings

The results showed that a compressive strength of SFRC is reduced by 38 and 66 per cent, tensile strength is reduced by 25 and 59 per cent and ultimate bending force is reduced by 33 and 56 per cent in case of 400°C and 600°C, respectively, comparing with ambient temperature.

Originality value

The developed testing procedure could be used for determination of material properties of SFRC under elevated temperatures.

Details

Journal of Structural Fire Engineering, vol. 8 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 23 September 2021

Shoaib Ahmad and Ghulamul Hasnain

Steel fibers reinforced concrete (SFRC) is now widely accepted as a construction material for its added benefits. The proven increases in high shear capacity, toughness, bridging…

Abstract

Purpose

Steel fibers reinforced concrete (SFRC) is now widely accepted as a construction material for its added benefits. The proven increases in high shear capacity, toughness, bridging action of fibers and bond improvement from addition of steel fibers into mix design is a field yet to be explored, Therefore, Reinforced Cement Concrete (RCC) beam-column joint with steel fibers was modeled and analyzed for cyclic loading.

Design/methodology/approach

Beam-column joint is the most critical section of a structure under mixed loading such as that during a seismic episode. Therefore, in this research a reinforced SFRC beam column joint is modeled and analyzed for cyclic earthquake loading with the help of finite element analysis (FEA) software ABAQUS to compare the results with the experimental study.

Findings

Nonlinear static and nonlinear dynamic analysis are carried out on the SFRC joint for the comparison of simulated results with the experimental analysis.

Originality/value

In this paper, Initially, modeling of SFRC joint was done. Then, the finite element analysis of beam-column joint with steel fibers was carried out. After number of simulations, obtained FEA results were compared with the experimental work on the based on the load vs deflection curve, shear stresses, plastic strain region and plastic strain pattern. After the comparison, it was found that the performance of the numeric model for cyclic loading verified the experimental study, and the results obtained were quite promising.

Details

International Journal of Structural Integrity, vol. 12 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 31 October 2018

Sepani Senaratne, Olivia Mirza, Gregory Lambrousis and Alessandro Fernandez-Soncini

The use of recycled aggregates (RA) has been explored to lead to a more sustainable future. The paper investigates on a sustainable concrete mix incorporating steel fibres (SF…

Abstract

Purpose

The use of recycled aggregates (RA) has been explored to lead to a more sustainable future. The paper investigates on a sustainable concrete mix incorporating steel fibres (SF) and RA to provide an alternative to traditional natural aggregate concrete for structural applications. This paper aims to explore the feasibility of combining RA and SF in structural applications in terms of strength, cost and industry perspectives.

Design/methodology/approach

A mixed research approach is established with two phases. Phase 1 aims to identify an optimum material combination that satisfies the structural strength requirements and to identify the costs in its optimum combination. Phase 2 involves qualitative interviews with key industry parties to explore their perspective and identify various enablers and barriers for this material.

Findings

The optimum combination of 30 per cent RA replacement and 0.3 SF volume content has been identified through laboratory testing. It was noted that there would be a direct additional cost because of SF addition. However, when other benefits such as reduction in transportation costs and landfill dumping fees were considered, an overall cost saving could be achieved. Consequently, the key industry practitioners’ perspectives for this material have been gathered through qualitative interviews. Several enablers and barriers were identified through these interviews.

Originality/value

Even though, there are various research attempts on improving RA for structural purpose by adding different additives, a holistic study that incorporate cost effects and the industry perspectives was lacking and is addressed in this current study. In particular, industry perspectives lead to refocus research directions and get closer to the realisation of a sustainable construction industry.

Details

Journal of Engineering, Design and Technology, vol. 16 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 20 December 2022

Hamsavathi Kannan, Soorya Prakash K. and Kavimani V.

The aim of the work is to investigate structural behaviour of reinforced concrete (RF) beam retrofitted with basalt fibre (BF) fabric. The incorporation of BF showed enhancement…

Abstract

Purpose

The aim of the work is to investigate structural behaviour of reinforced concrete (RF) beam retrofitted with basalt fibre (BF) fabric. The incorporation of BF showed enhancement in bending strength, to increase confinement and to repair damages caused by cracking. In the early decades, using BF for composite materials shaped BF as an excellent physical substance with necessary mechanical properties, highlighting the significant procedures ability.

Design/methodology/approach

Specimens were casted with U-wrapped BF and then evaluated based on flexural tests. In the test carried over for flexural fortifying assessment, BF reinforcements demonstrated a definitive quality improvement in the case of the subjected control sample; ultimately, the end impacts depend upon the applied test parameters. From the outcomes introduced in this comparison, for the double-wrapped sample, the modifications improved by 12% than that of the single-wrapped beam, which is identified to subsist for a better strengthening of new-age retrofitting designs.

Findings

The current research deals with the retrofitting of RC beam by conducting a comparative experiment on wrapping of BF (single or double BF wrapping) in improving the mechanical behavior of concrete.

Originality/value

It can be shown from the experimental results that increasing the number of layers has significant effect on basalt strengthened beams.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 14 May 2018

Suvash Chandra Paul, Gideon P.A.G. van Zijl, Ming Jen Tan and Ian Gibson

Three-dimensional printing of concrete (3DPC) has a potential for the rapid industrialization of the housing sector, with benefits of reduced construction time due to no formwork…

7169

Abstract

Purpose

Three-dimensional printing of concrete (3DPC) has a potential for the rapid industrialization of the housing sector, with benefits of reduced construction time due to no formwork requirement, ease of construction of complex geometries, potential high construction quality and reduced waste. Required materials adaption for 3DPC is within reach, as concrete materials technology has reached the point where performance-based specification is possible by specialists. This paper aims to present an overview of the current status of 3DPC for construction, including existing printing methods and material properties required for robustness of 3DPC structures or structural elements.

Design/methodology/approach

This paper has presented an overview of three categories of 3DPC systems, namely, gantry, robotic and crane systems. Material compositions as well as fresh and hardened properties of mixes currently used for 3DPC have been elaborated.

Findings

This paper presents an overview of the state of the art of 3DPC systems and materials. Research needs, including reinforcement in the form of bars or fibres in the 3D printable cement-based materials, are also addressed.

Originality/value

The critical analysis of the 3D concrete printing system and materials described in this review paper is original.

Details

Rapid Prototyping Journal, vol. 24 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 22 May 2023

Pandimani

The ultimate capacity and ductility behavior of a reinforced concrete (RC) beam generally depends on its constituent material properties. This study aims to use ANSYS to…

Abstract

Purpose

The ultimate capacity and ductility behavior of a reinforced concrete (RC) beam generally depends on its constituent material properties. This study aims to use ANSYS to accentuate the nonlinear parametric finite element (FE) simulations of RC sections under monotonic loading.

Design/methodology/approach

The concrete matrix and steel reinforcement are the primary constituent materials of RC beams. The material properties such as tensile reinforcement area, tensile bars yield strength, concrete compressive strength and strain rate in tensile reinforcement at nominal strength have significantly influenced the ultimate response of RC beams. Therefore, these intensive parameters are considered in this study to ascertain their effect on the RC beam's ultimate behavior. The nonlinear response up to the ultimate load capacity and the crack evolutions of RC beams are predicted efficiently.

Findings

The parametric study reveals that increasing the tensile steel reinforcements (from Ast = 213–857 mm2) significantly improves the ultimate load capacity by 229% and yield deflections by 20%. However, it declines the ultimate deflection by 47% and ductility by 56% substantially. Varying the strain limit (?tn = 0.010–0.0015) of tensile reinforcement has proficiently increased the ultimate load-resisting capacity by 20%, whereas the ductility declined by 62%. When the concrete strength increases (from fck = 25–65 MPa), the cracking load increases profoundly by 51%, whereas the ultimate capacity has found an insignificant effect.

Originality/value

The load-deflection response plots extracted from the proposed numerical model exhibit satisfactory accuracy (less than 9% deviation) against the experimental curves available in the literature, which emphasizes the proficiency of the proposed FE model.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 16 August 2013

Carlos L. Moreno and Ana M. Sarmento

The paper aims to present an experimental testing program regarding reinforced concrete slabs, with and without shear reinforcement, submitted to punching under both symmetric and…

Abstract

Purpose

The paper aims to present an experimental testing program regarding reinforced concrete slabs, with and without shear reinforcement, submitted to punching under both symmetric and eccentric loading. Comparisons between numerical simulations and experimental behaviour results are carried on. The capabilities and limitations of the numerical model to reproduce the brittle punching‐shear failure are discussed.

Design/methodology/approach

The paper opted for a performance assessment of a numerical model, comparing FEM results with known experimental tests properly instrumented. Capability of DIANA software to simulate the punching behaviour of slabs is discussed.

Findings

The paper demonstrates that the mechanical properties assigned to the element layer containing the bending reinforcement impose the load deflection stiffness behaviour. Good agreement was found between the predicted and the observed deformation behaviour. Nevertheless, the reproduction of the punching ultimate capacity is strongly dependent on the adopted value for the shear retention factor, which appears to be the major decisive parameter.

Originality/value

This paper demonstrates that the smeared crack model based on both the concept of strain decomposition (SD) and total strain with fixed orthogonal cracks approach (TSF) can correctly be used for the analysis of the behaviour of slabs submitted to punching shear.

Details

Engineering Computations, vol. 30 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 September 2019

Faezeh Nejati and S.A. Edalatpanah

The purpose of this paper is to investigate the effect of steel and carbon fibers on the mechanical properties of light concrete in terms of tension strength, compressive strength…

94

Abstract

Purpose

The purpose of this paper is to investigate the effect of steel and carbon fibers on the mechanical properties of light concrete in terms of tension strength, compressive strength and elastic modulus under completely dry and wet conditions.

Design/methodology/approach

In this study, the lightweight concrete made of Light Expanded Clay Aggregate (LECA) as coarse aggregate and sand as fine aggregate was used. To achieve a compressive strength of at least 20 MPa, microsilica was used 10 percent by weight of cement. In order to compensate for the reduction of tension strength of concrete, steel and carbon fibers were used with three volume ratio of 0.5, 1 and 1.5 percent in concrete. The results of concrete specimens were studied at the age of 7, 28, 42 and 90 days under controlled dry and wet conditions.

Findings

The results showed that the addition of steel and carbon fibers to the concrete mixture would reduce the drop in slump. Also, the use of steel and carbon fibers plays a significant role in increasing the tension strength of the specimens. Furthermore, the highest increase in tension strength of steel and carbon fiber samples was 83.3 and 50 percent, respectively, than the non-fibrous specimen when evaluated at 90 days of age. Moreover, the steel and carbon fiber increased the water absorption of the samples. Adding steel and carbon fibers to a lightweight concretes mixture containing LECA aggregates plays a significant role in increasing the modulus of elasticity of the samples. The highest increase in the elastic modulus of steel and carbon fibers was 18.9 and 35.4 percent, respectively, than the non-fibrous specimen at 28 days of age.

Originality/value

In this paper, the authors investigated the mechanical properties of steel fiber and carbon reinforced concrete. Also, according to the conditions of storage of samples and the age of concrete (day), the experiments were carried out on samples.

Details

International Journal of Structural Integrity, vol. 11 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 24 May 2023

Vijaya Prasad Burle, Tattukolla Kiran, N. Anand, Diana Andrushia and Khalifa Al-Jabri

The construction industries at present are focusing on designing sustainable concrete with less carbon footprint. Considering this aspect, a Fibre-Reinforced Geopolymer Concrete…

Abstract

Purpose

The construction industries at present are focusing on designing sustainable concrete with less carbon footprint. Considering this aspect, a Fibre-Reinforced Geopolymer Concrete (FGC) was developed with 8 and 10 molarities (M). At elevated temperatures, concrete experiences deterioration of its mechanical properties which is in some cases associated with spalling, leading to the building collapse.

Design/methodology/approach

In this study, six geopolymer-based mix proportions are prepared with crimped steel fibre (SF), polypropylene fibre (PF), basalt fibre (BF), a hybrid mixture consisting of (SF + PF), a hybrid mixture with (SF + BF), and a reference specimen (without fibres). After temperature exposure, ultrasonic pulse velocity, physical characteristics of damaged concrete, loss of compressive strength (CS), split tensile strength (TS), and flexural strength (FS) of concrete are assessed. A polynomial relationship is developed between residual strength properties of concrete, and it showed a good agreement.

Findings

The test results concluded that concrete with BF showed a lower loss in CS after 925 °C (i.e. 60 min of heating) temperature exposure. In the case of TS, and FS, the concrete with SF had lesser loss in strength. After 986 °C and 1029 °C exposure, concrete with the hybrid combination (SF + BF) showed lower strength deterioration in CS, TS, and FS as compared to concrete with PF and SF + PF. The rate of reduction in strength is similar to that of GC-BF in CS, GC-SF in TS and FS.

Originality/value

Performance evaluation under fire exposure is necessary for FGC. In this study, we provided the mechanical behaviour and physical properties of SF, PF, and BF-based geopolymer concrete exposed to high temperatures, which were evaluated according to ISO standards. In addition, micro-structural behaviour and linear polynomials are observed.

Details

Journal of Structural Fire Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 17 December 2021

Yousef Al Rjoub, Ala Obaidat, Ahmed Ashteyat and Khalid Alshboul

This study aims to conduct an experimental study and finite element model (FEM) to investigate the flexural behavior of heat-damaged beams strengthened/repaired by hybrid…

Abstract

Purpose

This study aims to conduct an experimental study and finite element model (FEM) to investigate the flexural behavior of heat-damaged beams strengthened/repaired by hybrid fiber-reinforced polymers (HFRP).

Design/methodology/approach

Two groups of beams of (150 × 250 × 1,200) mm were cast, strengthened and repaired using different configurations of HFRP and tested under four-point loadings. The first group was kept at room temperature, while the second group was exposed to a temperature of 400°C.

Findings

It was found that using multiple layers of carbon fiber-reinforced polymer (CFRP) and glass fiber-reinforced polymer (GFRP) enhanced the strength more than a single layer. Also, the order of two layers of FRP showed no effect on flexural behavior of beams. Using a three-layer scheme (attaching the GFRP first and followed by two layers of CFRP) exhibited increase in ultimate load more than the scheme attached by CFRP first. Furthermore, the scheme HGC (heated beam repaired with glass and carbon, in sequence) allowed to achieve residual flexural capacity of specimen exposed to 400°C. Typical flexural failure was observed in control and heat-damaged beams, whereas the strengthened/repaired beams failed by cover separation and FRP debonding, however, specimen repaired with two layers of GFRP failed by FRP rupture. The FEM results showed good agreement with experimental results.

Originality/value

Few researchers have studied the effects of HFRP on strengthening and repair of heated, damaged reinforced concrete (RC) beams. This paper investigates, both experimentally and analytically, the performance of externally strengthened and repaired RC beams, in flexure, with different FRP configurations of CFRP and GFRP.

Details

Journal of Structural Fire Engineering, vol. 13 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of 20