Search results

11 – 20 of 948
Article
Publication date: 27 November 2018

Sarbjit Kaur, Niraj Bala and Charu Khosla

The biomaterials are natural or synthetic materials used to improve quality of life either by replacing tissue/organ or assisting their function in medical field. The purpose of…

248

Abstract

Purpose

The biomaterials are natural or synthetic materials used to improve quality of life either by replacing tissue/organ or assisting their function in medical field. The purpose of the study is to analyze the hydroxyapatite (HAP), HAP-TiO2 (25 percent) composite coatings deposited on 316 LSS by High Velocity Flame Spray (HVFS) technique.

Design/methodology/approach

The coatings exhibit almost uniform and dense microstructure with porosity (HAP = 0.153 and HAP-TiO2 composite = 0.138). Electrochemical corrosion testing was done on the uncoated and coated specimens in Ringer solution (SBF). As-sprayed coatings were characterized by XRD, SEM/EDS and cross-sectional X-ray mapping techniques before and after dipping in Ringer solution. Microhardness of composite coating (568.8 MPa) was found to be higher than HAP coating (353 MPa).

Findings

During investigations, it was observed that the corrosion resistance of steel was found to have increased after the deposition of HAP and HAP-TiO2 composite coatings. Thus, coatings serve as an effective diffusion barrier to prohibit the diffusion of ions from the SBF into the substrate. Composite coatings have been found to be more corrosion resistant as compared to HAP coating in the simulated body fluid.

Research limitations/implications

It has been concluded that corrosion resistance of HAP as well as composite coating is because of the desirable microstructural changes such as low porosity high microhardness and flat splat structures in coatings as compared to bare specimen.

Practical implications

This study is useful in the selection of biomedical implants.

Social implications

This study is useful in the field of biomaterials.

Originality/value

No reported literature on corrosion behavior of HAP+ 25%- TiO2 has been noted till now using flame spray technique. The main focus of the study is to investigate the HAP as well as composite coatings for biomedical applications.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Content available
Article
Publication date: 14 January 2014

Gary Hunter

96

Abstract

Details

Sensor Review, vol. 34 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 25 July 2018

Mohd Rafee Baharudin, Hairul Nazmin Nasruddin, Anita Abdul Rahman, Mohd Razif Mahadi and Samsul Bahari Mohd Noor

The purpose of this paper is to design a numerical model to calculate the individual evacuation time among secondary students based on Knowledge, Attitude and Practice (KAP)…

Abstract

Purpose

The purpose of this paper is to design a numerical model to calculate the individual evacuation time among secondary students based on Knowledge, Attitude and Practice (KAP), human characteristics and travel distances.

Design/methodology/approach

Validated KAP questionnaires were distributed among 290 respondents. The KAP level was obtained based on the assigned scores. During a fire drill, the individual evacuation time was calculated by using personal digital watch while the travel distances were recorded and measured. A linear numerical model was derived by using multiple linear regression to identify the significant variables and the coefficients.

Findings

The CVI, CVR and Cronbach’s α value (0.75, 0.59 and 0.7, respectively) which are greater than minimum accepted level proved the reliability and consistency of the instrument. The evacuation time prediction by the developed numerical model showed strong correlation with the actual time (R=0.95). The regression analysis found that 89 per cent proportion of variance in the evacuation time are determined by the predictors. Based on the linear equation, it found that the decrease in weight, knowledge level and walking speed while increase in BMI, flat and stair travel distances could increase evacuation time. From the six significant variables, weight, walking speed, flat and stair distances showed significant correlation in the model with p<0.001, while BMI and knowledge showed p<0.05. The integration with mobility factors expand the formula which applicable within dynamic fire scenario.

Research limitations/implications

The involvement of examination students in the study is restricted by the Ministry of Education Malaysia to avoid interruption of learning session which limited the data representation.

Originality/value

Instead of using the traditional direct measurement of the evacuation time, the developed numerical model is an alternative convenient approach which could be used as one of the pre-assessment tool to identify the level of safety among students. The low cost and shorter time application of this model become one of the greatest advantages compared to other available approaches. The calculated individual evacuation time could be used directly to develop a better fire safety policy.

Details

International Journal of Building Pathology and Adaptation, vol. 36 no. 5
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 30 November 2022

Xishuang Jing, Duanping Lv, Fubao Xie, Chengyang Zhang, Siyu Chen and Ben Mou

3D printing technology has the characteristics of fast forming and low cost and can manufacture parts with complex structures. At present, it has been widely used in various…

Abstract

Purpose

3D printing technology has the characteristics of fast forming and low cost and can manufacture parts with complex structures. At present, it has been widely used in various manufacturing fields. However, traditional 3-axis printing has limitations of the support structure and step effect due to its low degree of freedom. The purpose of this paper is to propose a robotic 3D printing system that can realize support-free printing of parts with complex structures.

Design/methodology/approach

A robotic 3D printing system consisting of a 6-degrees of freedom robotic manipulator with a material extrusion system is proposed for multi-axis additive manufacturing applications. And the authors propose an approximation method for the extrusion value E based on the accumulated arc length of the already printed points, which is used to realize the synchronous movement between multiple systems. Compared with the traditional 3-axis printing system, the proposed robotic 3D printing system can provide greater flexibility when printing complex structures and even realize curved layer printing.

Findings

Two printing experiments show that compared with traditional 3D printing, a multi-axis 3D printing system saves 47% and 79% of materials, respectively, and the mechanical properties of curved layer printing using a multi-axis 3D printing system are also better than that of 3-axis printing.

Originality/value

This paper shows a simple and effective method to realize the synchronous movement between multiple systems so as to develop a robotic 3D printing system that can realize support-free printing and verifies the feasibility of the system through experiments.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 May 2023

Taha Sheikh and Kamran Behdinan

This paper aims to present a geometrical void model in conjunction with a multiscale method to evaluate the effect of interraster distance, bead (raster) width and layer height…

Abstract

Purpose

This paper aims to present a geometrical void model in conjunction with a multiscale method to evaluate the effect of interraster distance, bead (raster) width and layer height, on the voids concentration (volume) and subsequently calculate the final mechanical properties of the fused deposition modeling parts at constant infill.

Design/methodology/approach

A geometric model of the voids inside the representative volume element (RVE) is combined with a two-scale asymptotic homogenization method. The RVEs are subjected to periodic boundary conditions solved by finite element (FE) to calculate the effective mechanical properties of the corresponding RVEs. The results are validated with literature and experiments.

Findings

Bead width from 0.2 to 0.3 mm, reported a decrease of 25% and 24% void volume for a constant layer height (0.1 and 0.2 mm – 75% infill). It is reported that the void’s volume increased up to 14%, 32% and 36% for 75%, 50% and 25% infill by varying layer height (0.1–0.2  and 0.3 mm), respectively. For elastic modulus, 14%, 9% and 10% increase is reported when the void’s volume is decreased from 0.3 to 0.1 mm at a constant 75% infill density. The bead width and layer height have an inverse effect on voids volume.

Originality/value

This work brings values: a multiscale-geometric model capable of predicting the voids controllability by varying interraster distance, layer height and bead width. The idealized RVE generation slicer software and Solidworks save time and cost (<10 min, $0). The proposed model can effectively compute the mechanical properties together with the voids analysis.

Details

Rapid Prototyping Journal, vol. 29 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 April 2021

Yaolin Lin and Wei Yang

The purpose of this paper is to present a tri-optimization approach to optimize design solutions regarding the building shape and envelope properties considering their…

Abstract

Purpose

The purpose of this paper is to present a tri-optimization approach to optimize design solutions regarding the building shape and envelope properties considering their implications on thermal comfort, visual comfort and building energy consumption (EN). The optimization approach has been applied to obtain the optimal design solutions in five typical cities across all climatic regions of China.

Design/methodology/approach

The method comprises a tri-optimization process with nine main steps to optimize the three objectives (thermal comfort, visual comfort and building EN). The design variables considered are four types of building shape (pyramid, rectangular, cylindrical and dome shape) and different envelope properties (insulation thickness [INS] of external walls/roof, window type [WT] and window-to-envelop surface area ratio [WESR]). The optimization is performed by using the Taguchi and constraint limit method.

Findings

The results show that the optimal design solutions for all climatic regions favor cylindrical shape and triple-layer low-E glazing window. The highest insulation level of 150 mm is preferred in three climatic regions, and the INS of 90 mm is preferred in the other two climate regions. In total, 10% WESR is preferred in all climatic regions, except the mild region. When the constraint limit of lighting intensity requirement by Leadership in Energy and Environmental Design (LEED) is applied, the rectangular shape building is the optimal solution for those with 10% WESR.

Research limitations/implications

The method proposed in the paper is innovative in that it optimizes three different objectives simultaneously in building design with better accuracy and calculation speed.

Practical implications

Building designers can easily follow the proposed design guide in their practice which effectively bridges the gap between theory and practice. The optimal design solutions can provide a more comfortable living environment and yet less EN, which can help achieve the sustainability requirement of green buildings.

Social implications

The solutions presented in the paper can serve as a useful guide for practical building designers which creates economic and commercial impact. In addition, the theory and practical examples of the study can be used by building regulators to improve the energy-efficient building design standard in China.

Originality/value

The research is the first attempt that adopts tri-optimization approach to generate the optimal solutions for building shape and envelope design. The tri-optimization approach can be used by building designers to generate satisfactory design solutions from the architectural viewpoint and meanwhile to find combinations of the building shape and envelope properties that lead to design solutions with optimal building performance.

Details

Engineering, Construction and Architectural Management, vol. 29 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 19 September 2016

Kisan Koirala, Jose H. Santos, Ai Ling Tan, Mohammad A. Ali and Aminul H. Mirza

This paper aims to develop an inexpensive, portable, sensitive and environmentally friendly electrochemical sensor to quantify trace metals.

Abstract

Purpose

This paper aims to develop an inexpensive, portable, sensitive and environmentally friendly electrochemical sensor to quantify trace metals.

Design/methodology/approach

A sensor was constructed by modifying carbon paste electrode for the determination of lead, cadmium and zinc ions using square wave anodic stripping voltammetry (SWASV). The modified electrode was prepared by inserting homogeneous mixture of 2-hydroxy-acetophenonethiosemicarbazone, graphite powder and mineral oil. Various important parameters controlling the performance of the sensor were investigated and optimized. Electrochemical behavior of modified electrode was characterized by cyclic voltammetry.

Findings

Modified carbon pastes electrodes showed three distinct peaks at −0.50, −0.76 and −1.02 V vs silver/silver chloride corresponding to the oxidation of lead, cadmium and zinc ions at the electrode surface, respectively. The highest peak currents for all the metal ions under study were observed in the phosphate buffer solution at pH 1 with a deposition time of 70 s. The sensor exhibited linear behavior in the range of 0.25-12.5 μg mL-1 for lead and cadmium and 0.25-10.0 μg mL−1 for zinc. The limit of detection was calculated as 78.81, 96.17 and 91.88 ng mL−1 for Pb2+, Cd2+and Zn2+, respectively. The modified electrode exhibited good stability and repeatability.

Originality/value

A chemically modified electrode with Schiff base was applied to determine the content of cadmium, lead and zinc ions in aqueous solutions using SWASV.

Details

Sensor Review, vol. 36 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 23 August 2021

Iván La Fé-Perdomo, Jorge Andres Ramos-Grez, Gerardo Beruvides and Rafael Alberto Mujica

The purpose of this paper is to outline some key aspects such as material systems used, phenomenological and statistical process modeling, techniques applied to monitor the…

Abstract

Purpose

The purpose of this paper is to outline some key aspects such as material systems used, phenomenological and statistical process modeling, techniques applied to monitor the process and optimization approaches reported. All these need to be taken into account for the ongoing development of the SLM technique, particularly in health care applications. The outcomes from this review allow not only to summarize the main features of the process but also to collect a considerable amount of investigation effort so far achieved by the researcher community.

Design/methodology/approach

This paper reviews four significant areas of the selective laser melting (SLM) process of metallic systems within the scope of medical devices as follows: established and novel materials used, process modeling, process tracking and quality evaluation, and finally, the attempts for optimizing some process features such as surface roughness, porosity and mechanical properties. All the consulted literature has been highly detailed and discussed to understand the current and existing research gaps.

Findings

With this review, there is a prevailing need for further investigation on copper alloys, particularly when conformal cooling, antibacterial and antiviral properties are sought after. Moreover, artificial intelligence techniques for modeling and optimizing the SLM process parameters are still at a poor application level in this field. Furthermore, plenty of research work needs to be done to improve the existent online monitoring techniques.

Research limitations/implications

This review is limited only to the materials, models, monitoring methods, and optimization approaches reported on the SLM process for metallic systems, particularly those found in the health care arena.

Practical implications

SLM is a widely used metal additive manufacturing process due to the possibility of elaborating complex and customized tridimensional parts or components. It is corroborated that SLM produces minimal amounts of waste and enables optimal designs that allow considerable environmental advantages and promotes sustainability.

Social implications

The key perspectives about the applications of novel materials in the field of medicine are proposed.

Originality/value

The investigations about SLM contain an increasing amount of knowledge, motivated by the growing interest of the scientific community in this relatively young manufacturing process. This study can be seen as a compilation of relevant researches and findings in the field of the metal printing process.

Details

Rapid Prototyping Journal, vol. 27 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 August 2020

Yueling Lyu, Yangzhi Chen and Yulin Wan

Selective laser melting (SLM) is an important advanced additive manufacturing technology. The existing SLM printing technology cannot manufacture the mechanical parts that fully…

Abstract

Purpose

Selective laser melting (SLM) is an important advanced additive manufacturing technology. The existing SLM printing technology cannot manufacture the mechanical parts that fully meet the requirements of high precision and strength. This paper aims to explore a new post-processing method for SLM 316L specimen, namely, using of the TiN/TiAlN multilayer coating fabricated by multi-arc ion plating on the surface of SLM specimens, for improving the performance of SLM specimens. The other purpose of this paper is compared the performances of the TiAlN/TiN multilayer coating machined specimen and the TiN/TiAlN multilayer coating SLM specimen.

Design/methodology/approach

The TiN/TiAlN multilayer coating is fabricated by multi-arc ion plating on the surface of 316L specimens. The surface morphology and selected mechanical properties of TiN/TiAlN multilayer coating plating on the SLM substrate specimen and the machined substrate specimen were studied in this paper. The analyzed properties included surface topography, micro hardness, the adhesion, the thickness and the wear resistance of TiN/TiAlN multilayer coating plating on the SLM substrate specimen and the machined substrate specimen.

Findings

The electron microscope images reveal that surface morphology of TiN/TiAlN multilayer coating plating on the SLM specimens is relatively flat, and there are some micro-particles in different sizes and pin holes dispersed on them. After TiN/TiAlN multilayer coating, the performances of SLM samples, such as micro hardness, the thickness and the wear resistance, were significantly improved. The micro hardness of TiN/TiAlN multilayer coating machined specimen is higher than that of TiN/TiAlN multilayer coating SLM specimen. However, the adhesion of TiN/TiAlN multilayer coating machined specimen is less than that of TiN/TiAlN multilayer coating SLM specimen.

Originality/value

The study provides a new post-processing method for SLM 316L specimen to improve the performance of SLM specimens and to enable SLM specimens to be applied in the field of precision mechanical transmission.

Details

Rapid Prototyping Journal, vol. 26 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 December 2022

Taha Sheikh and Kamran Behdinan

This paper aims to present a hierarchical multiscale model to evaluate the effect of fused deposition modeling (FDM) process parameters on mechanical properties. Asymptotic…

91

Abstract

Purpose

This paper aims to present a hierarchical multiscale model to evaluate the effect of fused deposition modeling (FDM) process parameters on mechanical properties. Asymptotic homogenization mathematical theory is developed into two scales (micro and macro scales) to compute the effective elastic and shear modulus of the printed parts. Four parameters, namely, raster orientation, layer height, build orientation and porosity are studied.

Design/methodology/approach

The representative volume elements (RVEs) are generated by mimicking the microstructure of the printed parts. The RVEs subjected to periodic boundary conditions were solved using finite element. The experimental characterization according to ASTM D638 was conducted to validate the computational modeling results.

Findings

The computational model reports reduction (E1, ∼>38%) and (G12, ∼>50%) when porosity increased. The elastic modulus increases (1.31%–47.68%) increasing the orthotropic behavior in parts. Quasi-solids parts (100% infill) possess 10.71% voids. A reduction of 11.5% and 16.5% in elastic modulus with layer height is reported. In total, 45–450 oriented parts were highly orthotropic, and 0–00 parts were strongest. The order of parameters affecting the mechanical properties is porosity > layer height > raster orientation > build orientation.

Originality/value

This study adds value to the state-of-the-art terms of construction of RVEs using slicing software, discarding the necessity of image processing and study of porosity in FDM parts, reporting that the infill density is not the only measure of porosity in these parts.

Details

Rapid Prototyping Journal, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

11 – 20 of 948