Search results

1 – 10 of 845
Content available
Book part
Publication date: 8 April 2024

Amaresh Panda and Sanjay Mohapatra

Abstract

Details

The Online Healthcare Community
Type: Book
ISBN: 978-1-83549-141-6

Content available
Book part
Publication date: 14 February 2022

Satya Banerjee, Sanjay Mohapatra and M. Bharati

Abstract

Details

AI in Fashion Industry
Type: Book
ISBN: 978-1-80262-633-9

Article
Publication date: 26 May 2023

Jugal Mohapatra, Sushree Priyadarshana and Narahari Raji Reddy

The purpose of this work is to introduce an efficient, global second-order accurate and parameter-uniform numerical approximation for singularly perturbed parabolic…

Abstract

Purpose

The purpose of this work is to introduce an efficient, global second-order accurate and parameter-uniform numerical approximation for singularly perturbed parabolic differential-difference equations having a large lag in time.

Design/methodology/approach

The small delay and advance terms in spatial direction are handled with Taylor's series approximation. The Crank–Nicholson scheme on a uniform mesh is applied in the temporal direction. The derivative terms in space are treated with a hybrid scheme comprising the midpoint upwind and the central difference scheme at appropriate domains, on two layer-resolving meshes namely, the Shishkin mesh and the Bakhvalov–Shishkin mesh. The computational effectiveness of the scheme is enhanced by the use of the Thomas algorithm which takes less computational time compared to the usual Gauss elimination.

Findings

The proposed scheme is proved to be second-order accurate in time and to be almost second-order (up to a logarithmic factor) uniformly convergent in space, using the Shishkin mesh. Again, by the use of the Bakhvalov–Shishkin mesh, the presence of a logarithmic effect in the spatial-order accuracy is prevented. The detailed analysis of the convergence of the fully discrete scheme is thoroughly discussed.

Research limitations/implications

The use of second-order approximations in both space and time directions makes the complete finite difference scheme a robust approximation for the considered class of model problems.

Originality/value

To validate the theoretical findings, numerical simulations on two different examples are provided. The advantage of using the proposed scheme over some existing schemes in the literature is proved by the comparison of the corresponding maximum absolute errors and rates of convergence.

Details

Engineering Computations, vol. 40 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Content available
Book part
Publication date: 26 April 2021

Rajalakshmi Subramaniam, Senthilkumar Nakkeeran and Sanjay Mohapatra

Abstract

Details

Team Work Quality
Type: Book
ISBN: 978-1-80117-263-9

Content available
Book part
Publication date: 5 May 2021

Jose Joy Thoppan, M. Punniyamoorthy, K. Ganesh and Sanjay Mohapatra

Abstract

Details

Developing an Effective Model for Detecting Trade-based Market Manipulation
Type: Book
ISBN: 978-1-80117-397-1

Content available

Abstract

Details

Organizational Culture and Its Impact on Continuous Improvement in Manufacturing
Type: Book
ISBN: 978-1-80262-404-5

Abstract

Details

Process Automation Strategy in Services, Manufacturing and Construction
Type: Book
ISBN: 978-1-80455-144-8

Article
Publication date: 20 January 2021

Subal Ranjan Sahu and Jugal Mohapatra

The purpose of this study is to provide a robust numerical method for a two parameter singularly perturbed delay parabolic initial boundary value problem (IBVP).

Abstract

Purpose

The purpose of this study is to provide a robust numerical method for a two parameter singularly perturbed delay parabolic initial boundary value problem (IBVP).

Design/methodology/approach

To solve the problem, the authors have used a hybrid scheme combining the midpoint scheme, the upwind scheme and the second-order central difference scheme for the spatial derivatives. The backward Euler scheme on a uniform mesh is used to approximate the time derivative. Here, the authors have used Shishkin type meshes for spatial discretization.

Findings

It is observed that the proposed method converges uniformly with almost second-order spatial accuracy with respect to the discrete maximum norm.

Originality/value

This paper deals with the numerical study of a two parameter singularly perturbed delay parabolic IBVP. To solve the problem, the authors have used a hybrid scheme combining the midpoint scheme, the upwind scheme and the second-order central difference scheme for the spatial derivatives. The backward Euler scheme on a uniform mesh is used to approximate the time derivative. The convergence analysis is carried out. It is observed that the proposed method converges uniformly with almost second-order spatial accuracy with respect to the discrete maximum norm. Numerical experiments illustrate the efficiency of the proposed scheme.

Details

Engineering Computations, vol. 38 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 May 2023

Rashma R.S.V., Jayalekshmi B.R. and Shivashankar R.

The study aims to analyse the stability of embankments over the improved ground with stone column (SC) and pervious concrete column (PCC) inclusions using limit equilibrium…

Abstract

Purpose

The study aims to analyse the stability of embankments over the improved ground with stone column (SC) and pervious concrete column (PCC) inclusions using limit equilibrium method. The short-term stability of PCC-supported embankment system is rarely addressed. Therefore, the factor of safety (FOS) of column-supported embankment system is calculated using individual column and equivalent area models.

Design/methodology/approach

The stability analysis of column-supported embankment system is conducted using PLAXIS LE 2D. The various geometrical and shear strength parameters influencing the FOS of these embankment systems such as diameter of columns, spacing between columns, embankment height, friction angle of column material, undrained cohesion of weak ground and cohesion of PCC are considered.

Findings

The critical failure envelope of PCC-supported embankment system is observed to be of toe failure, whereas the failure envelope of stone column-supported embankment system is generally of deep-seated nature.

Originality/value

It is found that for PCC embankment system, FOS and failure envelope are not influenced by the geometrical/shear strength parameters other than height of embankment. However, for stone column-supported embankment system, FOS and failure envelope are dependent on all the shear strength and geometrical parameters considered in this study.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 17 July 2020

Swati Yadav and Pratima Rai

The purpose of this study is to construct and analyze a parameter uniform higher-order scheme for singularly perturbed delay parabolic problem (SPDPP) of convection-diffusion type…

Abstract

Purpose

The purpose of this study is to construct and analyze a parameter uniform higher-order scheme for singularly perturbed delay parabolic problem (SPDPP) of convection-diffusion type with a multiple interior turning point.

Design/methodology/approach

The authors construct a higher-order numerical method comprised of a hybrid scheme on a generalized Shishkin mesh in space variable and the implicit Euler method on a uniform mesh in the time variable. The hybrid scheme is a combination of simple upwind scheme and the central difference scheme.

Findings

The proposed method has a convergence rate of order O(N2L2+Δt). Further, Richardson extrapolation is used to obtain convergence rate of order two in the time variable. The hybrid scheme accompanied with extrapolation is second-order convergent in time and almost second-order convergent in space up to a logarithmic factor.

Originality/value

A class of SPDPPs of convection-diffusion type with a multiple interior turning point is studied in this paper. The exact solution of the considered class of problems exhibit two exponential boundary layers. The theoretical results are supported via conducting numerical experiments. The results obtained using the proposed scheme are also compared with the simple upwind scheme.

1 – 10 of 845