Search results

1 – 10 of 566
Article
Publication date: 13 August 2020

Kun Li, Shuai Ji, Guojun Niu, Yue Ai, Bo Pan and Yili Fu

Existing robot-assisted minimally invasive surgery (RMIS) system lacks of force feedback, and it cannot provide the surgeon with interaction forces between the surgical…

Abstract

Purpose

Existing robot-assisted minimally invasive surgery (RMIS) system lacks of force feedback, and it cannot provide the surgeon with interaction forces between the surgical instruments and patient’s tissues. This paper aims to restore force sensation for the RMIS system and evaluate effect of force sensing in a master-slave manner.

Design/methodology/approach

This paper presents a four-DOF surgical instrument with modular joints and six-axis force sensing capability and proposes an incremental position mode master–slave control strategy based on separated position and orientation to reflect motion of the end of master manipulator to the end of surgical instrument. Ex-vivo experiments including tissue palpation and blunt dissection are conducted to verify the effect of force sensing for the surgical instrument. An experiment of trajectory tracking is carried out to test precision of the control strategy.

Findings

Results of trajectory tracking experiment show that this control strategy can precisely reflect the hand motion of the operator, and the results of the ex-vivo experiments including tissue palpation and blunt dissection illustrate that this surgical instrument can measure the six-axis interaction forces successfully for the RMIS.

Originality/value

This paper addresses the important role of force sensing and force feedback in RMIS, clarifies the feasibility to apply this instrument prototype in RMIS for force sensing and provides technical support of force feedback for further clinical application.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 June 2005

S.M. Tavakoli, D.A. Pullen and S.B. Dunkerton

Aims to review polymeric materials used as adhesives and the related bonding procedures applicable in the medical industry.

1967

Abstract

Purpose

Aims to review polymeric materials used as adhesives and the related bonding procedures applicable in the medical industry.

Design/methodology/approach

The main types of polymeric materials used as adhesives are described. Details and the main points of the adhesive bonding processes are also described with comments on their adaptability to automated assembly. Finally, typical examples of the use of adhesives in medical device applications are provided.

Research limitations/implications

Review paper with examples of applications of adhesives in assembly of medical materials and devices.

Practical implications

The appropriate selection of adhesive types and bonding parameters are critical for successful application of this technology in joining medical materials. Most currently available medical grade adhesives are only suitable for short‐term (<30 days) implantable application. The users must ensure that the properties of the selected adhesives, particularly the relevant biocompatibility and toxicity data are available and fully comply with any specific medical device application and regulation.

Originality/value

Although this is a general review paper, it contains information about new materials and processing techniques applied in successful application of adhesive bonding technology in medical devices. The information provided is expected to be of significant benefit to material scientists and design engineers evaluating and identifying suitable joining techniques for the assembly of medical devices.

Details

Assembly Automation, vol. 25 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 3 May 2010

Mahmoud Tavakoli, Lino Marques and Aníbal T. de Almeida

The purpose of this paper is to describe design and development of a pole climbing robot (PCR) for inspection of industrial size pipelines. Nowadays, non‐destructive testing (NDT…

1278

Abstract

Purpose

The purpose of this paper is to describe design and development of a pole climbing robot (PCR) for inspection of industrial size pipelines. Nowadays, non‐destructive testing (NDT) methods are performed by dextrous technicians across high‐level pipes, frequently carrying dangerous chemicals. This paper reports development of a PCR that can perform in situ manipulation for NDT tests.

Design/methodology/approach

Introduces a PCR including a novel four‐degrees of freedom climbing serial mechanism with the nearly optimal workspace and weight, unique V‐shaped grippers and a fast rotational mechanism around the pole axis. Simplicity, safety, minimum weight, and manipulability were concerned in the design process.

Findings

The developed prototype proved possibility of application of PCRs for NDT inspection on elevated structures. Design and development of PCRs which are able to pass bends and T‐junctions faces much more difficulties than those which should climb from a straight pole.

Practical implications

The robot is successfully tested on an industrial size structure (exterior diameter of 219 mm) with bends and T‐junctions.

Originality/value

Design and development of a novel pole climbing and manipulating robot for inspection of industrial size pipelines. The robot is able to pass bends and T‐junctions. The V‐shaped grippers offer many advantages including safety and tolerance to power failure. After grasping the structure, in case of power failure in any of the grippers' motors, the robot does not slip on the structure. The Z‐axis rotational mechanism provides fast navigation around the pole which is not possible with the traditional serial articulated arms.

Details

Industrial Robot: An International Journal, vol. 37 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 30 August 2023

Mahdi Bastan, Reza Tavakkoli-Moghaddam and Ali Bozorgi-Amiri

Commercial banks face several risks, including credit, liquidity, operational and disruptive risks. In addition to these risks that are challenging for banks to control and…

Abstract

Purpose

Commercial banks face several risks, including credit, liquidity, operational and disruptive risks. In addition to these risks that are challenging for banks to control and manage, crises and disasters can exert substantially more destructive shocks. These shocks can exacerbate internal risks and cause severe damage to the bank's performance, leading banks to bankruptcy and closure. This study aims to facilitate achieving resilient banking policies through a model-based assessment of business continuity management (BCM) policies.

Design/methodology/approach

By applying a system dynamics (SD) methodology, a systemic model that includes a causal structure of the banking business is presented. To build a simulation model, data are collected from a commercial bank in Iran. By presenting the simulation model of the bank's business, the consequences of some given crises on the bank's performance are tested, and the effectiveness of risk and crisis management policies is evaluated. Vensim Personal Learning Edition (PLE) software is used to construct the simulation model.

Findings

Results indicate that the current BCM policies do not show appropriate resilience in the face of various crises. Commercial banks cannot create sustainable value for the banks' shareholders despite the possibility of profitability, as the shareholders lack adequate resilience and soundness. These commercial banks do not have the appropriate resilience for the next pandemic after coronavirus disease 2019 (COVID-19). Moreover, the robustness of the current banking business model is very fragile for the banking run crisis.

Practical implications

A forward-looking view of resilient banking can be obtained by combining liquidity coverage, stable funding, capital adequacy and insights from stress tests. Resilient banking requires a balanced combination of robustness, soundness and profitability.

Originality/value

The present study is a combination of bank business management, risk and resilience management and SD simulation. This approach can analyze and simulate the dynamics of bank resilience. Additionally, present of a decision support system (DSS) to analyze and simulate the outcomes of different crisis management policies and solutions is an innovative approach to developing effective and resilient banking policies.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 1 December 1994

S M Tavakoli

Examines the use of power beams to prepare surfaces prior to adhesivebonding. Describes the current surface treatments available and discussestheir limitations. Outlines how power…

184

Abstract

Examines the use of power beams to prepare surfaces prior to adhesive bonding. Describes the current surface treatments available and discusses their limitations. Outlines how power beam techniques for surface modification of polymeric and metallic adherends has the potential to overcome many of these problems. Also looks at the emerging technology of using radiation‐curable adhesives based on ultraviolet, visible light and electron beams, which have the advantages of fast rates of cure, improved quality of finished products and the absence of any volatile organic compounds.

Details

Assembly Automation, vol. 14 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 April 2005

M. Tavakoli, M.R. Zakerzadeh, G.R. Vossoughi and S. Bagheri

Aims to describe design, prototyping and characteristics of a pole climbing/manipulating robot with ability of passing bends and branches of the pole.

1773

Abstract

Purpose

Aims to describe design, prototyping and characteristics of a pole climbing/manipulating robot with ability of passing bends and branches of the pole.

Design/methodology/approach

Introducing a hybrid (parallel/serial) four degree of freedom (DOF) mechanism as the main part of the robot and also introduces a unique gripper design for pole climbing robots.

Findings

Finds that a robot, with the ability of climbing and manipulating on poles with bends and branches, needs at least 4 DOFs. Also an electrical cylinder is a good option for climbing robots and has some advantages over pneumatic or hydraulic cylinders.

Research limitations/implications

The robot is semi‐industrial size. Design and manufacturing of an industrial size robot are a good suggestion for future works.

Practical implications

With some changes on the gripper module and the last tool module, the robot is able to do some service works like pipe testing, pipe/pole cleaning, light bulb changing in highways etc.

Originality/value

Design and manufacturing of a pole‐climbing and manipulating robot with minimum DOFs for construction and service works.

Details

Industrial Robot: An International Journal, vol. 32 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 13 September 2021

Vijaya Prasad B., Arumairaj Paul Daniel, Anand N. and Siva Kumar Yadav

Concrete is a building material widely used for the infrastructural development. Cement is the binding material used for the development of concrete. It is the primary cause of CO2

174

Abstract

Purpose

Concrete is a building material widely used for the infrastructural development. Cement is the binding material used for the development of concrete. It is the primary cause of CO2 emission globally. The purpose of this study is to develop sustainable concrete material to satisfy the present need of construction sector. Geopolymer concrete (GPC) is a sustainable concrete developed without the use of cement. Therefore, investigations are being conducted to replace the cement by 100% with high calcium fly ash (FA) as binding material.

Design/methodology/approach

High calcium FA is used as cementitious binder, sodium hydroxide (NaOH) and sodium silicates (Na2SiO3) are used as alkaline liquids for developing the GPC. Mix proportions with different NaOH molarities of 4, 6, 8 and 10 M are considered to attain the appropriate mix. The method of curing adopted is ambient and oven curing. Workability, compressive strength and microstructure characteristics of GPC are analysed and presented.

Findings

An increase of NaOH in the mix decreases the workability. Compressive strength of 29 MPa is obtained for Mix-I with 8 M under ambient curing. A polynomial relationship is obtained to predict the compressive strength of GPC. Scanning electron microscope analysis is used to confirm the geo-polymerisation process in the microstructure of concrete.

Originality/value

This research work focuses on finding some alternative cementitious material for concrete that can replace ordinary portland cement (OPC) to overcome the CO2 emission owing to the utilisation of cement in the construction industry. An attempt has been made to use the waste material (high calcium FA) from thermal power plant for the production of GPC. GPC concrete is the novel building material and alternative to conventional concrete. It is the ecofriendly product contributing towards the improvement of the circular economy in the construction industry. There are several factors that affect the property of GPC such as type of binder material, molarity of activator solution and curing condition. The novelty of this work lies in the approach of using locally available high calcium FA along with manufactured sand for the development of GPC. As this approach is rarely investigated, to prove the attainment of compressive strength of GPC with high calcium FA, an attempt has been made during the present investigation. Other influencing parameter which affects the strength gain has also been analysed in this paper.

Details

Journal of Engineering, Design and Technology , vol. 20 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 6 November 2017

Yanzhong Wang, Yang Liu, Wen Tang and Peng Liu

The finite element method has been increasingly applied in stress, thermal and dynamic analysis of gear transmissions. Preparing the models with different design and modification…

Abstract

Purpose

The finite element method has been increasingly applied in stress, thermal and dynamic analysis of gear transmissions. Preparing the models with different design and modification parameters for the finite element analysis is a time-consuming and highly skilled burden.

Design/methodology/approach

To simplify the preprocessing work of the analysis, a parametric finite element modeling method for spur and helical gears including profile and lead modification is developed. The information about the nodes and elements is obtained and exported into the finite element software to generate the finite element model of the gear automatically.

Findings

By using the three-dimensional finite element tooth contact analysis method, the effects of tooth modifications on the transmission error and contact stress of spur and helical gears are presented.

Originality/value

The results demonstrate that the proposed method is useful for verifying the modification parameters of spur and helical gears in the case of deformations and misalignments.

Details

Engineering Computations, vol. 34 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 November 2023

Paola Briganti, Davide de Gennaro, Filomena Buonocore and Luisa Varriale

Drawing on the pay-for-performance (P4P) and job satisfaction literatures through an analysis of qualitative studies published on the topic, the purpose of this study is to…

Abstract

Purpose

Drawing on the pay-for-performance (P4P) and job satisfaction literatures through an analysis of qualitative studies published on the topic, the purpose of this study is to investigate the effect of a P4P-based system on job satisfaction and dissatisfaction among health care workers.

Design/methodology/approach

A meta-synthesis of the qualitative literature was conducted to investigate health care workers' opinions, perceptions and behaviors and fully understand what processes generate job satisfaction or dissatisfaction under P4P systems.

Findings

The findings suggest that P4P systems impact the job (dis-)satisfaction of health care workers based on the institutional, organizational, geographic and cultural context of reference. Specifically, job satisfaction – and thus motivation, occupational well-being and work engagement – can occur when the context is supportive, whereas job dissatisfaction – and thus work stress and pressure, burnout and work-life balance issues and distraction – is generated in the case of unsupportive contexts. Moreover, the findings suggest a virtuous/vicious circle whereby job satisfaction leads to positive performance and further fuels job satisfaction, while conversely job dissatisfaction generates worse performance, and this further worsens worker satisfaction.

Originality/value

There is a lack of studies comparing and analyzing current evidence on the job (dis-)satisfaction of health care workers operating in different contexts based on the reward system. This is the first research to analyze a significant number of studies with reference to the relation between P4P and job (dis-)satisfaction, which are topics in need of further study and investigation in health care settings around the world.

Details

International Journal of Public Sector Management, vol. 36 no. 6/7
Type: Research Article
ISSN: 0951-3558

Keywords

Content available
Article
Publication date: 1 June 2003

Jon Rigelsford

142

Abstract

Details

Assembly Automation, vol. 23 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 10 of 566