Search results

1 – 6 of 6
Article
Publication date: 25 January 2022

Vigneshkumar Chellappa and Vasundhara Srivastava

Science mapping is an essential application of visualization technology widely used in safety, construction management and environmental science. The purpose of this study was to…

243

Abstract

Purpose

Science mapping is an essential application of visualization technology widely used in safety, construction management and environmental science. The purpose of this study was to explore thermal comfort in residential buildings (TCinRB) research in India, identify research trends using a science mapping approach and provide a perspective for recommending future research in TCinRB.

Design/methodology/approach

This study used the VOSviewer tool to conduct a systematic analysis of the development trend in TCinRB studies in India based on Scopus Index articles published between 2001 and 2020. The annual numbers of articles, geographical locations of studies, major research organizations and authors, and the sources of journals on TCinRB were presented based on the analysis. Then, using co-authorship analysis, the collaborations among the major research groups were reported. Furthermore, research trends on TCinRB studies were visually explored using keyword co-occurrence analysis. The emerging research topics in the TCinRB research community were discovered by analyzing the authors’ keywords.

Findings

The findings revealed that studies had been discovered to pay more attention to north-east India, vernacular architecture, Hyderabad apartments and temperature performance in the past two decades. Thermal adaptation, composite climate, evaporative cooling and clothing insulation are emerging research areas in the TCinRB domain. The findings summarized mainstream research areas based on Indian climatic zones, addressed current TCinRB research gaps and suggested future research directions.

Originality/value

This review is particularly significant because it could help researchers understand the body of knowledge in TCinRB and opens the way for future research to fill an important research gap.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 10 April 2023

Ahmad Sukkar, Moohammed Wasim Yahia, Emad Mushtaha, Aref Maksoud, Salem Buhashima Abdalla, Omar Nasif and Omer Melahifci

This study analyzes the effect of the techniques of active teaching and learning as a way of delivery on the outcomes of quality learning. Focusing on the courses of architectural…

Abstract

Purpose

This study analyzes the effect of the techniques of active teaching and learning as a way of delivery on the outcomes of quality learning. Focusing on the courses of architectural science taught in a nontraditional method using various active learning strategies, the study takes the case study of the course Building Illumination and Acoustics (BIA) delivered in the academic year 2019–2020 at the University of Sharjah (UoS)'s Architectural Engineering Department (AED).

Design/methodology/approach

Utilizing both quantitative and qualitative research approaches, the study applied a case study and survey as methods. A questionnaire was designed and performed to assess the level of students' satisfaction with the implemented active teaching method.

Findings

The vibrant learning setting made the students actively engaged and more motivated and enthusiastic. The active learning practices used, including employing senses as in sight and hearing, reasoning rationally and intuitively, reflecting and acting, working steadily and in fits and starts, creating mathematical models, visualizing and memorizing and drawing analogies, were efficient in boosting their ability to comprehend theoretical concepts more effectively. The delivery style effectively enhances quality learning when various active techniques are used pedagogically beyond being merely a utilitarian instrument to prepare novice students of architectural engineering to fulfill practical challenges.

Research limitations/implications

This article focuses specifically on a theoretical, scientific non-studio course in a particular program of architectural engineering in a particular semester before the dramatic changes in styles of teaching delivery that happened due to the COVID-19 pandemic. Future research could further highlight its results by comparing them to statistical evidence of the development of the course, especially for the duration of online teaching during the pandemic and the hybrid teaching period after it.

Originality/value

This article contributes to the development of teaching and learning of architectural engineering in the local Emirati context by putting original theories of teaching into practice. This paper further contributes to the field of architectural pedagogy in terms of the effect of active learning in the architecture field in the non-studio courses in higher education in the United Arab Emirates.

Article
Publication date: 6 November 2023

Zhiying Wang and Hongmei Jia

Forecasting demand of emergency supplies under major epidemics plays a vital role in improving rescue efficiency. Few studies have combined intuitionistic fuzzy set with…

Abstract

Purpose

Forecasting demand of emergency supplies under major epidemics plays a vital role in improving rescue efficiency. Few studies have combined intuitionistic fuzzy set with grey-Markov method and applied it to the prediction of emergency supplies demand. Therefore, this article aims to establish a novel method for emergency supplies demand forecasting under major epidemics.

Design/methodology/approach

Emergency supplies demand is correlated with the number of infected cases in need of relief services. First, a novel method called the Intuitionistic Fuzzy TPGM(1,1)-Markov Method (IFTPGMM) is proposed, and it is utilized for the purpose of forecasting the number of people. Then, the prediction of demand for emergency supplies is calculated using a method based on the safety inventory theory, according to numbers predicted by IFTPGMM. Finally, to demonstrate the effectiveness of the proposed method, a comparative analysis is conducted between IFTPGMM and four other methods.

Findings

The results show that IFTPGMM demonstrates superior predictive performance compared to four other methods. The integration of the grey method and intuitionistic fuzzy set has been shown to effectively handle uncertain information and enhance the accuracy of predictions.

Originality/value

The main contribution of this article is to propose a novel method for emergency supplies demand forecasting under major epidemics. The benefits of utilizing the grey method for handling small sample sizes and intuitionistic fuzzy set for handling uncertain information are considered in this proposed method. This method not only enhances existing grey method but also expands the methodologies used for forecasting demand for emergency supplies.

Highlights (for review)

  1. An intuitionistic fuzzy TPGM(1,1)-Markov method (IFTPGMM) is proposed.

  2. The safety inventory theory is combined with IFTPGMM to construct a prediction method.

  3. Asymptomatic infected cases are taken to forecast the demand for emergency supplies.

An intuitionistic fuzzy TPGM(1,1)-Markov method (IFTPGMM) is proposed.

The safety inventory theory is combined with IFTPGMM to construct a prediction method.

Asymptomatic infected cases are taken to forecast the demand for emergency supplies.

Details

Grey Systems: Theory and Application, vol. 14 no. 1
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 18 March 2024

Prosun Mandal, Srinjoy Chatterjee and Shankar Chakraborty

In many of today’s manufacturing industries, such as automobile, aerospace, defence, die and mould making, medical and electrical discharge machining (EDM) has emerged as an…

Abstract

Purpose

In many of today’s manufacturing industries, such as automobile, aerospace, defence, die and mould making, medical and electrical discharge machining (EDM) has emerged as an effective material removal process. In this process, a series of discontinuous electric discharges is used for removing material from the workpiece in the form of craters generating a replica of the tool into the workpiece in a dielectric environment. Appropriate selection of the tool electrode material and combination of input parameters is an important requirement for performance enhancement of an EDM process. This paper aims to optimize an EDM process using single-valued neutrosophic grey relational analysis using Cu-multi-walled carbon nanotube (Cu-MWCNT) composite tool electrode.

Design/methodology/approach

This paper proposes the application of grey relational analysis (GRA) in a single-valued neutrosophic fuzzy environment to identify the optimal parametric intermix of an EDM process while considering Cu-MWCNT composite as the tool electrode material. Based on Taguchi’s L9 orthogonal array, nine experiments are conducted at varying combinations of four EDM parameters, i.e. pulse-on time, duty factor, discharge current and gap voltage, with subsequent measurement of two responses, i.e. material removal rate (MRR) and tool wear rate (TWR). The electrodeposition process is used to fabricate the Cu-MWCNT composite tool.

Findings

It is noticed that both the responses would be simultaneously optimized at higher levels of pulse-on time (38 µs) and duty factor (8), moderate level of discharge current (5 A) and lower level of gap voltage (30 V). During bi-objective optimization (maximization of MRR and minimization of TWR) of the said EDM process, the achieved values of MRR and TWR are 243.74 mm3/min and 0.001034 g/min, respectively.

Originality/value

Keeping in mind the type of response under consideration, their measured values for each of the EDM experiments are expressed in terms of linguistic variables which are subsequently converted into single-valued neutrosophic numbers. Integration of GRA with single-valued neutrosophic sets would help in optimizing the said EDM process with the Cu-MWCNT composite tool while simultaneously considering truth-membership, indeterminacy membership and falsity-membership degrees in a human-centric uncertain decision-making environment.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 26 March 2024

Wael Sheta, Mariam El Hussainy and Sahar Abdelwahab

The fundamental aim of the study is to investigate the implications of labor housing designs in Dubai, with a focus on courtyards and the governing building regulations, on…

Abstract

Purpose

The fundamental aim of the study is to investigate the implications of labor housing designs in Dubai, with a focus on courtyards and the governing building regulations, on daylight performance as an underlying factor impacting laborers’ indoor environmental quality. Several studies shed light on the subject of labor camps and labor migration in Dubai, but few have focused on the subject from the perspective of the environmental performance of these camps. A model that represents one of the labor camps was built using Rhinoceros 7.0 and Grasshopper software packages. Annual daylighting and glare simulations were carried out using the lighting modeling engine RADIANCE 5.0 in conjunction with the “ClimateStudio”.

Design/methodology/approach

The construction sector has emerged as a significant economic development driver, attracting a diverse labor force from a variety of countries to Dubai. As a result, Dubai authorities have implemented several measures to ensure the provision of suitable housing facilities for its labor force. These measures contribute to the reduction of energy costs in labor housing by encouraging the use of renewable energy. While several studies shed light on the subject of labor camps and labor migration in Dubai, few have focused on the subject from the perspective of the environmental performance of these camps.

Findings

The study provided statistical evidence that the current regulations governing courtyards in labor housing resulted in significant changes in daylight levels across different floor levels of the labor housing units. It is suggested that both 2:3 and 3:4 Court Width-to-Height ratios would further contribute to a more consistent daylight Illuminance with marginal statistical differences between floor levels (p > 0.05). The 3:4 ratio, on the other hand, offers a consistent distribution across all floor levels in the North and South with negligible variances, although weakly significant differences can be yet expected between the first and fourth floors in the East and West orientations (p < 0.05). The results of Annual Sunlight Exposure (ASE) suggest excessive solar incidence and a high probability of glare, which remains a problem that must be addressed under the governing building regulations.

Originality/value

This study could serve as a framework for analyzing and contrasting the findings of other studies on labor accommodation, notably in the Gulf Cooperation Council (GCC) countries. Such an approach has the potential to enhance living conditions in labor accommodations in Dubai and other areas. It is necessary to meet people' physical and psychological well-being while also addressing sustainability and regulatory compliance.

Details

Open House International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 26 January 2024

Débora Domingo-Calabuig, Javier Rivera-Linares, Laura Lizondo-Sevilla and José Luis Alapont-Ramón

City planning and construction have embraced circular economy principles, converting them into various indicators. Particularly in the European context, the question “what…

Abstract

Purpose

City planning and construction have embraced circular economy principles, converting them into various indicators. Particularly in the European context, the question “what architecture for circularity?” is answered with policies focusing on techniques, materials and disassembling construction. This paper analyzes a new approach to sustainable design and explores the concept of Km0 architecture. The objective is to demonstrate the design strategies of a contemporary architecture based on local resources and knowledge, an architecture that works with the shortest possible loop in circularity, i.e. with the cycle that consumes the least amount of energy.

Design/methodology/approach

The paper presents two ways of understanding sustainability in architecture: the first as a result of policies and the second associated with the design and innovative-based New European Bauhaus initiative. Within the scope of this last understanding, the authors analyze three cases on the Spanish Mediterranean coast that have recently received media attention and prominence. The selection responds to a specific climate adaption through a certain typological and functional diversity of the works.

Findings

The studied cases exhibit a more equitable and cost-effective circularity based on the time factor, have long life-cycle designs and serve as repositories of cultural identity. Km0 architecture reduces emissions using local resources and mitigates environmental conditions by combining traditional and modern design strategies.

Originality/value

This paper fulfills an identified need to study the local understandings of the built environment that would ensure a more fair and inclusive European green transformation.

Details

Open House International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0168-2601

Keywords

1 – 6 of 6