Search results

1 – 10 of 184
Article
Publication date: 17 April 2024

Vidyut Raghu Viswanath, Shivashankar Hiremath and Dundesh S. Chiniwar

The purpose of this study, most recent advancements in threedimensional (3D) printing have focused on the fabrication of components. It is typical to use different print settings…

18

Abstract

Purpose

The purpose of this study, most recent advancements in threedimensional (3D) printing have focused on the fabrication of components. It is typical to use different print settings, such as raster angle, infill and orientation to improve the 3D component qualities while fabricating the sample using a 3D printer. However, the influence of these factors on the characteristics of the 3D parts has not been well explored. Owing to the effect of the different print parameters in fused deposition modeling (FDM) technology, it is necessary to evaluate the strength of the parts manufactured using 3D printing technology.

Design/methodology/approach

In this study, the effect of three print parameters − raster angle, build orientation and infill − on the tensile characteristics of 3D-printed components made of three distinct materials − acrylonitrile styrene acrylate (ASA), polycarbonate ABS (PC-ABS) and ULTEM-9085 − was investigated. A variety of test items were created using a commercially accessible 3D printer in various configurations, including raster angle (0°, 45°), (0°, 90°), (45°, −45°), (45°, 90°), infill density (solid, sparse, sparse double dense) and orientation (flat, on-edge).

Findings

The outcome shows that variations in tensile strength and force are brought on by the effects of various printing conditions. In all possible combinations of the print settings, ULTEM 9085 material has a higher tensile strength than ASA and PC-ABS materials. ULTEM 9085 material’s on-edge orientation, sparse infill, and raster angle of (0°, −45°) resulted in the greatest overall tensile strength of 73.72 MPa. The highest load-bearing strength of ULTEM material was attained with the same procedure, measuring at 2,932 N. The tensile strength of the materials is higher in the on-edge orientation than in the flat orientation. The tensile strength of all three materials is highest for solid infill with a flat orientation and a raster angle of (45°, −45°). All three materials show higher tensile strength with a raster angle of (45°, −45°) compared to other angles. The sparse double-dense material promotes stronger tensile properties than sparse infill. Thus, the strength of additive components is influenced by the combination of selected print parameters. As a result, these factors interact with one another to produce a high-quality product.

Originality/value

The outcomes of this study can serve as a reference point for researchers, manufacturers and users of 3D-printed polymer material (PC-ABS, ASA, ULTEM 9085) components seeking to optimize FDM printing parameters for tensile strength and/or identify materials suitable for intended tensile characteristics.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 January 2024

Xinyue Lin, Maria Tims and Liang Meng

Taking attribution theory as an overarching framework, the study aims to examine how employees attribute and respond to a colleague's approach crafting.

Abstract

Purpose

Taking attribution theory as an overarching framework, the study aims to examine how employees attribute and respond to a colleague's approach crafting.

Design/methodology/approach

Two complementary studies, including a scenario experiment (Study 1; N = 114) and an online survey (Study 2; N = 220), were conducted to test the hypothesized model.

Findings

Study 1 found support for the attribution of a prosocial motive to approach crafting, which in turn led to more social support and less social undermining among observers. This mediation was stronger when the job crafter was perceived as less other-oriented. Study 2 replicated the findings of Study 1 and further showed that when observers attributed both high impression management and prosocial motives to approach crafting, the positive relationship between their prosocial motive attribution and social support for the job crafter got weakened, while the negative relationship between their prosocial motive attribution and social undermining of the job crafter was strengthened.

Originality/value

The findings demonstrate that approach crafting gives rise to specific attributions and reactions toward the job crafter, which enrich the understanding of the social consequences of job crafting in the workplace.

Details

Career Development International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1362-0436

Keywords

Open Access
Article
Publication date: 12 October 2023

V. Chowdary Boppana and Fahraz Ali

This paper presents an experimental investigation in establishing the relationship between FDM process parameters and tensile strength of polycarbonate (PC) samples using the…

478

Abstract

Purpose

This paper presents an experimental investigation in establishing the relationship between FDM process parameters and tensile strength of polycarbonate (PC) samples using the I-Optimal design.

Design/methodology/approach

I-optimal design methodology is used to plan the experiments by means of Minitab-17.1 software. Samples are manufactured using Stratsys FDM 400mc and tested as per ISO standards. Additionally, an artificial neural network model was developed and compared to the regression model in order to select an appropriate model for optimisation. Finally, the genetic algorithm (GA) solver is executed for improvement of tensile strength of FDM built PC components.

Findings

This study demonstrates that the selected process parameters (raster angle, raster to raster air gap, build orientation about Y axis and the number of contours) had significant effect on tensile strength with raster angle being the most influential factor. Increasing the build orientation about Y axis produced specimens with compact structures that resulted in improved fracture resistance.

Research limitations/implications

The fitted regression model has a p-value less than 0.05 which suggests that the model terms significantly represent the tensile strength of PC samples. Further, from the normal probability plot it was found that the residuals follow a straight line, thus the developed model provides adequate predictions. Furthermore, from the validation runs, a close agreement between the predicted and actual values was seen along the reference line which further supports satisfactory model predictions.

Practical implications

This study successfully investigated the effects of the selected process parameters - raster angle, raster to raster air gap, build orientation about Y axis and the number of contours - on tensile strength of PC samples utilising the I-optimal design and ANOVA. In addition, for prediction of the part strength, regression and ANN models were developed. The selected ANN model was optimised using the GA-solver for determination of optimal parameter settings.

Originality/value

The proposed ANN-GA approach is more appropriate to establish the non-linear relationship between the selected process parameters and tensile strength. Further, the proposed ANN-GA methodology can assist in manufacture of various industrial products with Nylon, polyethylene terephthalate glycol (PETG) and PET as new 3DP materials.

Details

International Journal of Industrial Engineering and Operations Management, vol. 6 no. 2
Type: Research Article
ISSN: 2690-6090

Keywords

Open Access
Article
Publication date: 9 February 2024

Martin Novák, Berenika Hausnerova, Vladimir Pata and Daniel Sanetrnik

This study aims to enhance merging of additive manufacturing (AM) techniques with powder injection molding (PIM). In this way, the prototypes could be 3D-printed and mass…

Abstract

Purpose

This study aims to enhance merging of additive manufacturing (AM) techniques with powder injection molding (PIM). In this way, the prototypes could be 3D-printed and mass production implemented using PIM. Thus, the surface properties and mechanical performance of parts produced using powder/polymer binder feedstocks [material extrusion (MEX) and PIM] were investigated and compared with powder manufacturing based on direct metal laser sintering (DMLS).

Design/methodology/approach

PIM parts were manufactured from 17-4PH stainless steel PIM-quality powder and powder intended for powder bed fusion compounded with a recently developed environmentally benign binder. Rheological data obtained at the relevant temperatures were used to set up the process parameters of injection molding. The tensile and yield strengths as well as the strain at break were determined for PIM sintered parts and compared to those produced using MEX and DMLS. Surface properties were evaluated through a 3D scanner and analyzed with advanced statistical tools.

Findings

Advanced statistical analyses of the surface properties showed the proximity between the surfaces created via PIM and MEX. The tensile and yield strengths, as well as the strain at break, suggested that DMLS provides sintered samples with the highest strength and ductility; however, PIM parts made from environmentally benign feedstock may successfully compete with this manufacturing route.

Originality/value

This study addresses the issues connected to the merging of two environmentally efficient processing routes. The literature survey included has shown that there is so far no study comparing AM and PIM techniques systematically on the fixed part shape and dimensions using advanced statistical tools to derive the proximity of the investigated processing routes.

Article
Publication date: 27 September 2023

Vivek Kumar Tiwary, Arunkumar Padmakumar and Vinayak R. Malik

Material extrusion (MEX) 3D printers suffer from an intrinsic limitation of small size of the prints due to its restricted bed dimension. On the other hand, friction stir spot…

Abstract

Purpose

Material extrusion (MEX) 3D printers suffer from an intrinsic limitation of small size of the prints due to its restricted bed dimension. On the other hand, friction stir spot welding (FSSW) is gaining wide interest from automobile, airplane, off-road equipment manufacturers and even consumer electronics. This paper aims to explore the possibility of FSSW on Acrylonitrile Butadiene Styrene/Polylactic acid 3D-printed components to overcome the bed size limitation of MEX 3D printers.

Design/methodology/approach

Four different tool geometries (tapered cylindrical pin with/without concavity, pinless with/without concavity) were used to produce the joints. Three critical process parameters related to FSSW (tool rotational speed, plunge depth and dwell time) and two related to 3D printing (material combination and infill percentages) were investigated and optimized using the Taguchi L27 design of experiments. The influence of each welding parameter on the shear strength was evaluated by analysis of variance.

Findings

Results revealed that the infill percentage, a 3D printing parameter, had the maximum effect on the joint strength. The joints displayed pull nugget, cross nugget and substrate failure morphologies. The outcome resulted in the joint efficiency reaching up to 100.3%, better than that obtained by other competitive processes for 3D-printed thermoplastics. The results, when applied to weld a UAV wing, showed good strength and integrity. Further, grafting the joints with nylon micro-particles was also investigated, resulting in a detrimental effect on the strength.

Originality/value

To the best of the authors’ knowledge, this is the first study to demonstrate that the welding of dissimilar 3D-printed thermoplastics with/without microparticles is possible by FSSW, whilst the process parameters have a considerable consequence on the bond strength.

Details

Rapid Prototyping Journal, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 6 October 2023

Cleiton Lazaro Fazolo De Assis and Cleber Augusto Rampazo

This paper aims to evaluate the mechanical behaviour of polycarbonate/acrylonitrile butadiene styrene (PC/ABS) filaments for fusion filament fabrication (FFF). PC/ABS have emerged…

Abstract

Purpose

This paper aims to evaluate the mechanical behaviour of polycarbonate/acrylonitrile butadiene styrene (PC/ABS) filaments for fusion filament fabrication (FFF). PC/ABS have emerged as a promising material for FFF due to their excellent mechanical properties. However, the optimal processing conditions and the effect of the blending ratio on the mechanical properties of the resulting workpieces are still unclear.

Design/methodology/approach

A statistical factorial matrix was designed, including infill pattern, printing speed, nozzle size, layer height and printing temperature as factors (with three levels). A total of 810 workpieces were printed using PC/ABS blends filament with the FFF. The workpieces’ finishing and mass were evaluated. Tensile tests were performed. Analysis of variance was performed to determine the main effects of the processing conditions on the mechanical properties.

Findings

The results showed that the PC/ABS (70/30) exhibited higher tensile. Tensile rupture corresponded to 30% of the tensile strength. The infill pattern showed the highest contribution to the responses. The concentric pattern showed higher tensile strength. Tensile strength and mass ratio demonstrated the influence of mass on tensile strength. The influence of printing parameters on deformation depended on the blend proportions. Higher printing speed and lower layer height provided better quality workpieces.

Originality/value

This study has implications for the design and manufacturing of three-dimensional printed parts using PC/ABS filaments. An extensive experimental matrix was applied, aiming at a complete understanding of mechanical behavior, considering the main printing parameters and combinations not explored by literature.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 August 2023

Fatih Yılmaz, Ercan Gürses and Melin Şahin

This study aims to evaluate and assess the elastoplastic properties of Ti-6Al-4V alloy manufactured by Arcam Q20 Plus electron beam melting (EBM) machine by a tensile test…

Abstract

Purpose

This study aims to evaluate and assess the elastoplastic properties of Ti-6Al-4V alloy manufactured by Arcam Q20 Plus electron beam melting (EBM) machine by a tensile test campaign and micro computerized tomography (microCT) imaging.

Design/methodology/approach

ASTM E8 tensile test specimens are designed and manufactured by EBM at an Arcam Q20 Plus machine. Surface quality is improved by machining to discard the effect of surface roughness. After surface machining, hot isostatic pressing (HIP) post-treatment is applied to half of the specimens to remove unsolicited internal defects. ASTM E8 tensile test campaign is carried out simultaneously with digital image correlation to acquire strain data for each sample. Finally, build direction and HIP post-treatment dependencies of elastoplastic properties are analyzed by F-test and t-test statistical analyses methods.

Findings

Modulus of elasticity presents isotropic behavior for each build direction according to F-test and t-test analysis. Yield and ultimate strengths vary according to build direction and post-treatment. Stiffness and strength properties are superior to conventional Ti-6Al-4V material; however, ductility turns out to be poor for aerospace structures compared to conventional Ti-6Al-4V alloy. In addition, micro CT images show that support structure leads to dense internal defects and pores at applied surfaces. However, HIP post-treatment diminishes those internal defects and pores thoroughly.

Originality/value

As a novel scientific contribution, this study investigates the effects of three orthogonal build directions on elastoplastic properties, while many studies focus on only two-build directions. Evaluation of Poisson’s ratio is the other originality of this study. Furthermore, another finding through micro CT imaging is that temporary support structures result in intense defects closer to applied surfaces; hence high-stress regions of structures should be avoided to use support structures.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 21 February 2024

Mohan Kumar K and Arumaikkannu G

The purpose of this paper is to compare the influence of relative density (RD) and strain rates on failure mechanism and specific energy absorption (SEA) of polyamide lattices…

Abstract

Purpose

The purpose of this paper is to compare the influence of relative density (RD) and strain rates on failure mechanism and specific energy absorption (SEA) of polyamide lattices ranging from bending to stretch-dominated structures using selective laser sintering (SLS).

Design/methodology/approach

Three bending and two stretch-dominated unit cells were selected based on the Maxwell stability criterion. Lattices were designed with three RD and fabricated by SLS technique using PA12 material. Quasi-static compression tests with three strain rates were carried out using Taguchi's L9 experiments. The lattice compressive behaviour was verified with the Gibson–Ashby analytical model.

Findings

It has been observed that RD and strain rates played a vital role in lattice compressive properties by controlling failure mechanisms, resulting in distinct post-yielding responses as fluctuating and stable hardening in the plateau region. Analysis of variance (ANOVA) displayed the significant impact of RD and emphasised dissimilar influences of strain rate that vary to cell topology. Bending-dominated lattices showed better compressive properties than stretch-dominated lattices. The interesting observation is that stretch-dominated lattices with over-stiff topology exhibited less compressive properties contrary to the Maxwell stability criterion, whereas strain rate has less influence on the SEA of face-centered and body-centered cubic unit cells with vertical and horizontal struts (FBCCXYZ).

Practical implications

This comparative study is expected to provide new prospects for designing end-user parts that undergo various impact conditions like automotive bumpers and evolving techniques like hybrid and functionally graded lattices.

Originality/value

To the best of the authors' knowledge, this is the first work that relates the strain rate with compressive properties and also highlights the lattice behaviour transformation from ductile to brittle while the increase of RD and strain rate analytically using the Gibson–Ashby analytical model.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 29 March 2024

Hubannur Seremet and Nazim Babacan

This paper aims to examine the static compression characteristics of cell topologies in body-centered cubic with vertical struts (BCCZ) and face-centered cubic with vertical…

Abstract

Purpose

This paper aims to examine the static compression characteristics of cell topologies in body-centered cubic with vertical struts (BCCZ) and face-centered cubic with vertical struts (FCCZ) along with novel BCCZZ and FCCZZ lattice structures.

Design/methodology/approach

The newly developed structures were obtained by adding extra interior vertical struts into the BCCZ and FCCZ configurations. The samples, composed of the AlSi10Mg alloy, were fabricated using the selective laser melting (SLM) additive manufacturing technique. The specific compressive strength and failure behavior of the manufactured lattice structures were investigated, and comparative analysis among them was done.

Findings

The results revealed that the specific strength of BCCZZ and FCCZZ samples with 0.5 mm strut diameter exhibited approximately a 23% and 18% increase, respectively, compared with the BCCZ and FCCZ samples with identical strut diameters. Moreover, finite element analysis was carried out to simulate the compressive response of the lattice structures, which could be used to predict their strength and collapse mode. The findings showed that while the local buckling of lattice cells is the major failure mode, the samples subsequently collapsed along a diagonal shear band.

Originality/value

An original and systematic investigation was conducted to explore the compression properties of newly fabricated lattice structures using SLM. The results revealed that the novel FCCZZ and BCCZZ structures were found to possess significant potential for load-bearing applications.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 August 2023

Shekhar Sharma, Saurav Datta, Tarapada Roy and Siba Sankar Mahapatra

Fused filament fabrication (FFF) is a type of additive manufacturing (AM) based on materials extrusion. It is the most widely practiced AM route, especially used for polymer-based…

Abstract

Purpose

Fused filament fabrication (FFF) is a type of additive manufacturing (AM) based on materials extrusion. It is the most widely practiced AM route, especially used for polymer-based rapid prototyping and customized product fabrication in relation to aerospace, automotive, architecture, consumer goods and medical applications. During FFF, part quality (surface finish, dimensional accuracy and static mechanical strength) is greatly influenced by several process parameters. The paper aims to study FFF parametric influence on aforesaid part quality aspects. In addition, dynamic analysis of the FFF part is carried out.

Design/methodology/approach

Interpretive structural modelling is attempted to articulate interrelationships that exist amongst FFF parameters. Next, a few specimens are fabricated using acrylonitrile butadiene styrene plastic at varied build orientation and build style. Effects of build orientation and build style on part’s ultimate tensile strength, flexure strength along with width build time are studied. Prototype beams (of different thickness) are fabricated by varying build style. Instrumental impact hammer Modal analysis is performed on the cantilever beams (cantilever support) to obtain the natural frequencies (first mode). Parametric influence on natural frequencies is also studied.

Findings

Static mechanical properties (tensile and flexure strength) are greatly influenced by build style and build orientation. Natural frequency (NF) of prototype beams is highly influenced by the build style and beam thickness.

Originality/value

FFF built parts when subjected to application, may have to face a variety of external dynamic loads. If frequency of induced vibration (due to external force) matches with NF of the component part, resonance is incurred. To avoid occurrence of resonance, operational frequency (frequency of externally applied forces) must be lower/ higher than the NF. Because NF depends on mass and stiffness, and boundary conditions, FFF parts produced through varying build style may definitely correspond to varied NF. This aspect is explained in this work.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 184