Search results

1 – 10 of over 66000
Article
Publication date: 1 August 1998

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder…

4528

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder metallurgy and composite material processing are briefly discussed. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for 1994‐1996, where 1,370 references are listed. This bibliography is an updating of the paper written by Brannberg and Mackerle which has been published in Engineering Computations, Vol. 11 No. 5, 1994, pp. 413‐55.

Details

Engineering Computations, vol. 15 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 October 2017

Cha’o Kuang Chen, Yu-Shen Chang, Chin-Chia Liu and Bang-Shiuh Chen

This paper aims to use the Laplace Adomian decomposition method (LADM) to investigate the effects of thermal convection, thermal conduction, surface emissivity and thermal…

Abstract

Purpose

This paper aims to use the Laplace Adomian decomposition method (LADM) to investigate the effects of thermal convection, thermal conduction, surface emissivity and thermal radiation on the heat dissipated by a continuously moving plate undergoing thermal processing.

Design/methodology/approach

In performing the analysis, it is assumed that the thermal conductivity and surface emissivity of the plate are both temperature-dependent. The accuracy of the LADM solutions is confirmed by comparing the results obtained for the temperature distribution within the plate with those reported in the literature based on the differential transformation method.

Findings

It is shown that the heat dissipated from the plate reduces as the Peclet number increases. By contrast, the dissipated heat increases as any one of the non-dimensionalized parameters of the system, i.e. Nc, Nr and B, increases. In addition, the temperature drop along the length of the plate reduces as parameter A increases owing to a more rapid heat transfer.

Originality/value

The results provide a useful source of reference for the choice of suitable materials and cooling fluids in a variety of practical applications.

Details

Engineering Computations, vol. 34 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 December 2004

George K. Stylios

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

3540

Abstract

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 16 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 12 May 2020

Jing Bai, Yuchang Zhang, Xiansheng Qin, Zhanxi Wang and Chen Zheng

The purpose of this paper is to present a visual detection approach to predict the poses of target objects placed in arbitrary positions before completing the corresponding tasks…

Abstract

Purpose

The purpose of this paper is to present a visual detection approach to predict the poses of target objects placed in arbitrary positions before completing the corresponding tasks in mobile robotic manufacturing systems.

Design/methodology/approach

A hybrid visual detection approach that combines monocular vision and laser ranging is proposed based on an eye-in-hand vision system. The laser displacement sensor is adopted to achieve normal alignment for an arbitrary plane and obtain depth information. The monocular camera measures the two-dimensional image information. In addition, a robot hand-eye relationship calibration method is presented in this paper.

Findings

First, a hybrid visual detection approach for mobile robotic manufacturing systems is proposed. This detection approach is based on an eye-in-hand vision system consisting of one monocular camera and three laser displacement sensors and it can achieve normal alignment for an arbitrary plane and spatial positioning of the workpiece. Second, based on this vision system, a robot hand-eye relationship calibration method is presented and it was successfully applied to a mobile robotic manufacturing system designed by the authors’ team. As a result, the relationship between the workpiece coordinate system and the end-effector coordinate system could be established accurately.

Practical implications

This approach can quickly and accurately establish the relationship between the coordinate system of the workpiece and that of the end-effector. The normal alignment accuracy of the hand-eye vision system was less than 0.5° and the spatial positioning accuracy could reach 0.5 mm.

Originality/value

This approach can achieve normal alignment for arbitrary planes and spatial positioning of the workpiece and it can quickly establish the pose relationship between the workpiece and end-effector coordinate systems. Moreover, the proposed approach can significantly improve the work efficiency, flexibility and intelligence of mobile robotic manufacturing systems.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 October 2017

Zimeng Wang, Fabrice Colin, Guigao Le and Junfeng Zhang

The purpose of this paper is to develop a counter-extrapolation approach for computational heat and mass transfer with the interfacial discontinuity considered at conjugate…

123

Abstract

Purpose

The purpose of this paper is to develop a counter-extrapolation approach for computational heat and mass transfer with the interfacial discontinuity considered at conjugate interfaces.

Design/methodology/approach

By applying finite-difference approximations for the interfacial gradients along the local normal direction, the conjugate system can be simplified to the Dirichlet boundary problems for individual domains. A suitable method for the Dirichlet boundary value condition can then be used. The lattice Boltzmann method has been used to demonstrate the method. The model has been carefully validated by comparing the simulation results and theoretical solutions for steady and unsteady systems with flat or circular interfaces. Furthermore, the cooling process of a hot cylinder in a cold flow, which involves unsteady flow and heat transfer across a curved interface, has been simulated as an example to illustrate the practical usefulness of this model.

Findings

Good agreement has been observed in comparisons of simulations and theoretical solutions. The convergence and stability of the method have also been examined and satisfactory results have been obtained. Results of the cylinder cooling process show that a surface insulation layer can effectively reduce the heat transfer process and slow down the cooling process.

Originality/value

This method possesses several technical advantages, including the simple and straightforward algorithm, and accurate representation of the interface geometry. The basic idea and algorithm of the counter-extrapolation procedure presented here can be readily extended to other lattice Boltzmann models and even other computational technologies for heat and mass transfer systems with interface discontinuity.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 2021

Shuhuan Wen, Xiaohan Lv, Hak Keung Lam, Shaokang Fan, Xiao Yuan and Ming Chen

This paper aims to use the Monodepth method to improve the prediction speed of identifying the obstacles and proposes a Probability Dueling DQN algorithm to optimize the path of…

Abstract

Purpose

This paper aims to use the Monodepth method to improve the prediction speed of identifying the obstacles and proposes a Probability Dueling DQN algorithm to optimize the path of the agent, which can reach the destination more quickly than the Dueling DQN algorithm. Then the path planning algorithm based on Probability Dueling DQN is combined with FastSLAM to accomplish the autonomous navigation and map the environment.

Design/methodology/approach

This paper proposes an active simultaneous localization and mapping (SLAM) framework for autonomous navigation under an indoor environment with static and dynamic obstacles. It integrates a path planning algorithm with visual SLAM to decrease navigation uncertainty and build an environment map.

Findings

The result shows that the proposed method offers good performance over existing Dueling DQN for navigation uncertainty under the indoor environment with different numbers and shapes of the static and dynamic obstacles in the real world field.

Originality/value

This paper proposes a novel active SLAM framework composed of Probability Dueling DQN that is the improved path planning algorithm based on Dueling DQN and FastSLAM. This framework is used with the Monodepth depth image prediction method with faster prediction speed to realize autonomous navigation in the indoor environment with different numbers and shapes of the static and dynamic obstacles.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 January 2010

X.Z. Chen and S.B. Chen

The recognition and positioning of start welding position (SWP) is the first step and one of the key technologies to realize autonomous robot welding. The purpose of this paper is…

Abstract

Purpose

The recognition and positioning of start welding position (SWP) is the first step and one of the key technologies to realize autonomous robot welding. The purpose of this paper is to describe a method developed to accomplish successful autonomous detection and guiding of SWP.

Design/methodology/approach

The images of workpieces are snapped by charge coupled device (CCD) cameras in a relative large range without additional light. The recognized methods of SWP are analyzed according to the given definition. A two‐step method named “coarse‐to‐fine” is proposed to recognize the SWP accurately. The first step is to solve the curve functions of seam and workpieces boundaries by fitting. The intersection point is regarded as initial value of SWP. The second step is to establish a small window that takes the initial value of SWP as centre. Then, the SWP is obtained exactly by corner detection in the window. Both the abundant information of original image and the structured information of recognized image are used according to given rules, which takes full advantage of the image information and improves the recognized precision.

Findings

The detected results show that the actual and calculated positions by first step of SWP are identical for regular seam, but different for the irregular curve seam. The exact results can be calculated by the two‐step method in the paper for both regular and irregular seams. The typical planar “S‐shape” and spatial arc curved seams are selected to carry out autonomous guiding of SWP.

Originality/value

The experimental results are given based on the introduction of 3D reconstructed and guided method. The guided precision is less than 1.1 mm, which meets the requirements of practical production. The proposed two‐step method recognizes the SWP rapidly and exactly from coarse to fine.

Details

Industrial Robot: An International Journal, vol. 37 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 25 October 2022

Chen Chen, Tingyang Chen, Zhenhua Cai, Chunnian Zeng and Xiaoyue Jin

The traditional vision system cannot automatically adjust the feature point extraction method according to the type of welding seam. In addition, the robot cannot self-correct the…

Abstract

Purpose

The traditional vision system cannot automatically adjust the feature point extraction method according to the type of welding seam. In addition, the robot cannot self-correct the laying position error or machining error. To solve this problem, this paper aims to propose a hierarchical visual model to achieve automatic arc welding guidance.

Design/methodology/approach

The hierarchical visual model proposed in this paper is divided into two layers: welding seam classification layer and feature point extraction layer. In the welding seam classification layer, the SegNet network model is trained to identify the welding seam type, and the prediction mask is obtained to segment the corresponding point clouds. In the feature point extraction layer, the scanning path is determined by the point cloud obtained from the upper layer to correct laying position error. The feature points extraction method is automatically determined to correct machining error based on the type of welding seam. Furthermore, the corresponding specific method to extract the feature points for each type of welding seam is proposed. The proposed visual model is experimentally validated, and the feature points extraction results as well as seam tracking error are finally analyzed.

Findings

The experimental results show that the algorithm can well accomplish welding seam classification, feature points extraction and seam tracking with high precision. The prediction mask accuracy is above 90% for three types of welding seam. The proposed feature points extraction method for each type of welding seam can achieve sub-pixel feature extraction. For the three types of welding seam, the maximum seam tracking error is 0.33–0.41 mm, and the average seam tracking error is 0.11–0.22 mm.

Originality/value

The main innovation of this paper is that a hierarchical visual model for robotic arc welding is proposed, which is suitable for various types of welding seam. The proposed visual model well achieves welding seam classification, feature point extraction and error correction, which improves the automation level of robot welding.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 August 2021

Chong Wang, Yingjie Wang, Kegu Adi, Yunzhong Huang, Yuanming Chen, Shouxu Wang, Wei He, Yao Tang, Yukai Sun, Weihua Zhang, Chenggang Xu and Xuemei He

The purpose of this paper is to establish an accurate model to quantify the effect of conductor roughness on insertion loss (IL) and provide improved measurements and suggestions…

167

Abstract

Purpose

The purpose of this paper is to establish an accurate model to quantify the effect of conductor roughness on insertion loss (IL) and provide improved measurements and suggestions for manufacturing good conductive copper lines of printed circuit board.

Design/methodology/approach

To practically investigates the modified model of conductor roughness, three different kinds of alternate oxidation treatments were used to provide transmission lines with different roughness. The IL results were measured by a vector net analyzer for comparisons with the modified model results.

Findings

An accurate model, with only a 1.8% deviation on average from the measured values, is established. Compared with other models, the modified model is more reliable in industrial manufacturing.

Originality/value

This paper introduces the influence of tiny roughness structures on IL. Besides, this paper discusses the effect of current distribution on IL.

Article
Publication date: 15 June 2012

Xi‐Zhang Chen, Yu‐Ming Huang and Shan‐ben Chen

Stereo vision technique simulates the function of the human eyes to observe the world, which can be used to compute the spatial information of weld seam in the robot welding…

Abstract

Purpose

Stereo vision technique simulates the function of the human eyes to observe the world, which can be used to compute the spatial information of weld seam in the robot welding field. It is a typical kind of application to fix two cameras on the end effector of robot when stereo vision is used in intelligent robot welding. In order to analyse the effect of vision system configuration on vision computing, an accuracy analysis model of vision computing is constructed, which is a good guide for the construction and application of stereo vision system in welding robot field.

Design/methodology/approach

A typical stereo vision system fixed on welding robot is designed and constructed to compute the position information of spatial seam. A simplified error analysis model of the two arbitrary putting cameras is built to analyze the effect of sensors' structural parameter on vision computing accuracy. The methodology of model analysis and experimental verification are used in the research. And experiments related with image extraction, robot movement accuracy is also designed to analyze the effect of equipment accuracy and related processed procedure in vision technology.

Findings

Effect of repeatability positioning accuracy and TCP calibration error of welding robot for visual computing are also analyzed and tested. The results show that effect of the repeatability on computing accuracy is not bigger than 0.3 mm. However, TCP affected the computing accuracy greatly, when the calibrated error of TCP is bigger than 0.5, the re‐calibration is very necessary. The accuracy analysis and experimental technique in this paper can guide the research of three‐dimensional information computing by stereo vision and improve the computed accuracy.

Originality/value

The accuracy of seam position information is affected by many interactional factors, the systematic experiments and a simplified error analysis model are designed and established, the main factors such as the sensor's configurable parameters, the accuracy of arc welding robot and the accuracy of image recognition, are included in the model and experiments. The model and experimental method are significant for design of visual sensor and improvement of computing accuracy.

Details

Industrial Robot: An International Journal, vol. 39 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of over 66000