Search results

1 – 5 of 5
Article
Publication date: 1 March 2022

Cheng Zhou, Rao Li, Xiaoju Xiong, Jie Li and Yuyue Gao

This study presented the experience of improving the nucleic acid sample collection and transportation service in response to the epidemic. The main purpose is that through…

Abstract

Purpose

This study presented the experience of improving the nucleic acid sample collection and transportation service in response to the epidemic. The main purpose is that through intelligent path planning, combined with the time scheduling of sample points, the process of obtaining results to determine the state of COVID-19 patients could be speeding up.

Design/methodology/approach

The research optimized the process, including finding an optimal path to traverse all sample points in the hospital area via intelligent path planning method and standardizing the operation through the time sequence scheduling of each round of support staff to collect and send samples in the hospital area, so as to ensure the shortest time in each round. And the study examines these real-time experiments through retrospective examination.

Findings

The real-time experiments' data showed that the proposed path planning and scheduling model could provide a reliable reference for improving the efficiency of hospital logistics. Testing is a very important part of diagnosis and prompt results are essential. It shows the possibility of applying the shortest-path algorithms to optimize sample collection processes in the hospital and presents the case study that gives the expected outcomes of such a process.

Originality/value

The value of the study lies in the abstraction of a very practical and urgent problem into a TSP. Combining the ant colony algorithm with the genetic algorithm (ACAGA), the performance of path planning is improved. Under the intervention and guidance, the efficiency of hospital regional logistics planning was greatly improved, which may be of greater benefit to critical patients who must go through fever clinic during the epidemic. By detailing how to more rapidly obtain results through engineering method, the paper contributes ideas and plans for practitioners to use. The experience and lessons learned from Tongji Hospital are expected to provide guidance for supporting service measures in national public health infrastructure management and valuable reference for the development of hospitals in other countries or regions.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 8
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 3 August 2023

Abdul Wahab Hashmi, Harlal Singh Mali, Anoj Meena, Shadab Ahmad and Yebing Tian

Three-dimensional (3D) printed parts usually have poor surface quality due to layer manufacturing’s “stair casing/stair-stepping”. So post-processing is typically needed to…

Abstract

Purpose

Three-dimensional (3D) printed parts usually have poor surface quality due to layer manufacturing’s “stair casing/stair-stepping”. So post-processing is typically needed to enhance its capabilities to be used in closed tolerance applications. This study aims to examine abrasive flow finishing for 3D printed polylactic acid (PLA) parts.

Design/methodology/approach

A new eco-friendly abrasive flow machining media (EFAFM) was developed, using paper pulp as a base material, waste vegetable oil as a liquid synthesizer and natural additives such as glycine to finish 3D printed parts. Characterization of the media was conducted through thermogravimetric analysis and Fourier transform infrared spectroscopy. PLA crescent prism parts were produced via fused deposition modelling (FDM) and finished using AFM, with experiments designed using central composite design (CCD). The impact of process parameters, including media viscosity, extrusion pressure, layer thickness and finishing time, on percentage improvement in surface roughness (%ΔRa) and material removal rate were analysed. Artificial neural network (ANN) and improved grey wolf optimizer (IGWO) were used for data modelling and optimization, respectively.

Findings

The abrasive media developed was effective for finishing FDM printed parts using AFM, with SEM images and 3D surface profile showing a significant improvement in surface topography. Optimal solutions were obtained using the ANN-IGWO approach. EFAFM was found to be a promising method for improving finishing quality on FDM 3D printed parts.

Research limitations/implications

The present study is focused on finishing FDM printed crescent prism parts using AFM. Future research may be done on more complex shapes and could explore the impact of different materials, such as thermoplastics and composites for different applications. Also, implication of other techniques, such as chemical vapour smoothing, mechanical polishing may be explored.

Practical implications

In the biomedical field, the use of 3D printing has revolutionized the way in which medical devices, implants and prosthetics are designed and manufactured. The biodegradable and biocompatible properties of PLA make it an ideal material for use in biomedical applications, such as the fabrication of surgical guides, dental models and tissue engineering scaffolds. The ability to finish PLA 3D printed parts using AFM can improve their biocompatibility, making them more suitable for use in the human body. The improved surface quality of 3D printed parts can also facilitate their sterilization, which is critical in the biomedical field.

Social implications

The use of eco-friendly abrasive flow finishing for 3D printed parts can have a positive impact on the environment by reducing waste and promoting sustainable manufacturing practices. Additionally, it can improve the quality and functionality of 3D printed products, leading to better performance and longer lifespans. This can have broader economic and societal benefits.

Originality/value

This AFM media constituents are paper pulp, waste vegetable oil, silicon carbide as abrasive and the mixture of “Aloe Barbadensis Mill” – “Cyamopsis Tetragonoloba” powder and glycine. This media was then used to finish 3D printed PLA crescent prism parts. The study also used an IGWO to optimize experimental data that had been modelled using an ANN.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 5 December 2022

Bhanupratap Gaur, Samrat Sagar, Chetana M. Suryawanshi, Nishant Tikekar, Rupesh Ghyar and Ravi Bhallamudi

Ti6Al4V alloy patient-customized implants (PCI) are often fabricated using laser powder bed fusion (LPBF) and annealed to enhance the microstructural, physical and mechanical…

Abstract

Purpose

Ti6Al4V alloy patient-customized implants (PCI) are often fabricated using laser powder bed fusion (LPBF) and annealed to enhance the microstructural, physical and mechanical properties. This study aims to demonstrate the effects of annealing on the physio-mechanical properties to select optimal process parameters.

Design/methodology/approach

Test samples were fabricated using the Taguchi L9 approach by varying parameters such as laser power (LP), laser velocity (LV) and hatch distance (HD) to three levels. Physical and mechanical test results were used to optimize the parameters for fabricating as-built and annealed implants separately using Grey relational analysis. An optimized parameter set was used for fabricating biological test samples, followed by animal testing to validate the qualified parameters.

Findings

Two optimized sets of process parameters (LP = 100 W, LV = 500 mm/s and HD = 0.08 mm; and LP = 300 W, LV = 1,350 mm/s and HD = 0.08 mm) are suggested suitable for implant fabrication regardless of the inclusion of annealing in the manufacturing process. The absence of any necrosis or reaction on the local tissues after nine weeks validated the suitability of the parameter set for implants.

Practical implications

To help PCI manufacturers in parameter selection and to exclude annealing from the manufacturing process for faster implant delivery.

Originality/value

To the best of the authors’ knowledge, this is probably a first attempt that suggests LPBF parameters that are independent of inclusion of annealing in implant fabrication process.

Article
Publication date: 22 September 2023

Rajesh Kumar Bhushan

The purpose of this paper is to examine the quality of the turned surface. The quality of the surface produced depends on the nature of the chips, which are produced while turning…

Abstract

Purpose

The purpose of this paper is to examine the quality of the turned surface. The quality of the surface produced depends on the nature of the chips, which are produced while turning metal matrix composites. This quality is a function of the machining parameters, tool material, tool configuration and elements of the composites.

Design/methodology/approach

In this study, the turning of AA7075/15 wt.% SiC (particle size 20–40 µm) composites is investigated. Thirty experiments were conducted, and the chip-formation mechanism in turning AA7075/SiCp composites at various combinations of cutting speeds, feed and depth of cuts was studied.

Findings

It is observed from the response surface methodology-based experimentation that in turning of coarser reinforcement (particle size 20–40 µm) composites, total gross fracture occurs. This causes small slices of chips and a higher shear plane angle. The nature of chips produced at various combinations of cutting speeds, feed and depth of cuts is different. The chips generated were segmented, spiral in cylindrical form, connected C type, chips with saw tooth, curled chips, washer C type chips, half-curved segmented chips and small-radii segmented chips.

Originality/value

The novelty of this research is that, so far, very little work has been published on the detailed analysis of chips produced during turning of AA7075/15 wt.% SiC (particle size 20–40 µm) composites.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 19 February 2024

Sabiha Sezgin Bozok

Titanium(IV) oxide nanoparticles (TiO2 NP) were deposited to cotton denim fabrics using a self-crosslinking acrylate – a polymer dispersion to extend the lifetime of the products…

Abstract

Purpose

Titanium(IV) oxide nanoparticles (TiO2 NP) were deposited to cotton denim fabrics using a self-crosslinking acrylate – a polymer dispersion to extend the lifetime of the products. This study aims to determine the optimum conditions to increase abrasion resistance, to provide self-cleaning properties of denim fabrics and to examine the effects of these applications on other physical properties.

Design/methodology/approach

The denim samples were first treated with nonionic surfactant to increase their wettability. Three different amounts of the polymer dispersion and two different pH levels were selected for the experimental design. The finishing process was applied to the fabrics with pad-dry-cure method.

Findings

The presence of the coatings and the adhesion of TiO2 NPs to the surfaces were confirmed by scanning electron microscope and Fourier transform infrared spectroscopy analysis. It was ascertained that the most appropriate self-crosslinking acrylate amount and ambient pH level is 10 mL and “2”, respectively, for providing increased abrasion resistance (2,78%) and enhanced self-cleaning properties (363,4%) in the denim samples. The coating reduced the air permeability and softness of the denim samples. Differential scanning calorimetry and thermogravimetry analysis results showed that the treatments increased the crystallization temperatures and melting enthalpy values of the denim samples. Based on the thermal test results, it is clear that mass loss of the denim samples at 370°C decreased as the amount of self-crosslinking acrylate increased (at pH 3).

Originality/value

This study helped us to find out optimum amount of self-crosslinking acrylate and proper pH level for enhanced self-cleaning and abrasion strength on denim fabrics. With this finishing process, an environmentally friendly and long-life denim fabric was designed.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 5 of 5