Search results

1 – 10 of 16
Article
Publication date: 19 June 2017

R. Hari Krishnan and S. Pugazhenthi

Wheelchair users face great difficulty in transferring themselves from one surface to another, for example from wheelchair to a toilet commode. In such cases, mostly a caregiver’s…

Abstract

Purpose

Wheelchair users face great difficulty in transferring themselves from one surface to another, for example from wheelchair to a toilet commode. In such cases, mostly a caregiver’s assistance may be required, but it affects one’s dignity. The purpose of this paper is to develop a robotic self-transfer device, which is aimed at offering privacy and independence to people with lower limb disabilities in performing daily activities.

Design/methodology/approach

The device, attached to a powered wheelchair, is useful in transferring a user from a wheelchair to a toilet commode or any other surface following simple and natural transfer procedure without the need of any caregiver. The user can achieve transfer by operating joysticks. The device employs two linear actuators and a motor to accomplish the transfer. Trials were carried out to test the performance of the device by involving potential beneficiaries.

Findings

The device could successfully transfer the participants from a wheelchair to a chair with less effort in less than a minute. The results of the trials show that the participants felt comfortable in using the device. It was also found that the device is superior to other existing transfer systems in terms of comfort and operation.

Originality/value

The existing self-transfer systems are alternative solutions that serve the purpose of mobility coupled with self-transfer. Instead of developing an alternative mobility solution, this paper proposes a novel design of a self-transfer device that can be used as an attachment to wheelchair.

Details

Journal of Enabling Technologies, vol. 11 no. 2
Type: Research Article
ISSN: 2398-6263

Keywords

Article
Publication date: 20 June 2022

Changlong Ye, Yunfei Du, Suyang Yu, Qiang Zhao and Chunying Jiang

With the development of automation technology, the accuracy, bearing capacity and self-adaptation requirements of wheeled mobile robots are more and more demanding under various…

Abstract

Purpose

With the development of automation technology, the accuracy, bearing capacity and self-adaptation requirements of wheeled mobile robots are more and more demanding under various complex conditions, which will urge designers such shortcomings as the low accuracy, poor flexibility and weak obstacle crossing ability of traditional heavy haul vehicles and improve the wear resistance and bearing capacity of traditional omnidirectional wheels.

Design/methodology/approach

The optimal configuration for heavy payload transportation is obtained by building sliding friction consumption model of traditional wheels with different driving types based on Hertz tangential contact theory. The heavy payload omnidirectional wheel with a double-wheel steering and a coupled differential wheel driving is designed with the optimal configuration. The wheel consists of a differential gear train unit and a nonindependent suspension unit. Kinematics model of the wheel is established and relative parameters are optimized.

Findings

The prototype experiments show that the wheel has higher motion accuracy and environment adaptability. The results are consistent with the theoretical calculation, which show that the accuracy is more than 50% higher than that of differential prototype. The motion stability and the accuracy of the coupled differential omnidirectional wheel are better than those of the traditional omnidirectional wheels during the moving and obstacle crossing process under complex conditions, which verifies the correctness and advantages of the design.

Originality/value

Aiming at the specific application of heavy payload omnidirectional transportation, a new omnidirectional mobile mechanism with a two-wheel coupling drive structure and an adaptive mechanism is proposed. The simulation and experimental results show that it can realize the high-precision heavy-load omnidirectional movement, the effective contact with the ground and improve the adaptability to the rugged ground. It is flexible, simple and modular and can be widely applied to transportation, exploration, detection and other related industrial fields.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 March 2022

Cheng Zhou, Rao Li, Xiaoju Xiong, Jie Li and Yuyue Gao

This study presented the experience of improving the nucleic acid sample collection and transportation service in response to the epidemic. The main purpose is that through…

Abstract

Purpose

This study presented the experience of improving the nucleic acid sample collection and transportation service in response to the epidemic. The main purpose is that through intelligent path planning, combined with the time scheduling of sample points, the process of obtaining results to determine the state of COVID-19 patients could be speeding up.

Design/methodology/approach

The research optimized the process, including finding an optimal path to traverse all sample points in the hospital area via intelligent path planning method and standardizing the operation through the time sequence scheduling of each round of support staff to collect and send samples in the hospital area, so as to ensure the shortest time in each round. And the study examines these real-time experiments through retrospective examination.

Findings

The real-time experiments' data showed that the proposed path planning and scheduling model could provide a reliable reference for improving the efficiency of hospital logistics. Testing is a very important part of diagnosis and prompt results are essential. It shows the possibility of applying the shortest-path algorithms to optimize sample collection processes in the hospital and presents the case study that gives the expected outcomes of such a process.

Originality/value

The value of the study lies in the abstraction of a very practical and urgent problem into a TSP. Combining the ant colony algorithm with the genetic algorithm (ACAGA), the performance of path planning is improved. Under the intervention and guidance, the efficiency of hospital regional logistics planning was greatly improved, which may be of greater benefit to critical patients who must go through fever clinic during the epidemic. By detailing how to more rapidly obtain results through engineering method, the paper contributes ideas and plans for practitioners to use. The experience and lessons learned from Tongji Hospital are expected to provide guidance for supporting service measures in national public health infrastructure management and valuable reference for the development of hospitals in other countries or regions.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 8
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 4 August 2020

Rameez Khan, Fahad Mumtaz Malik, Abid Raza and Naveed Mazhar

The purpose of this paper is to provide a comprehensive and unified presentation of recent developments in skid-steer wheeled mobile robots (SSWMR) with regard to its control…

Abstract

Purpose

The purpose of this paper is to provide a comprehensive and unified presentation of recent developments in skid-steer wheeled mobile robots (SSWMR) with regard to its control, guidance and navigation for the researchers who wish to study in this field.

Design/methodology/approach

Most of the contemporary unmanned ground robot’s locomotion is based upon the wheels. For wheeled mobile robots (WMRs), one of the prominent and widely used driving schemes is skid steering. Because of mechanical simplicity and high maneuverability particularly in outdoor applications, SSWMR has an advantage over its counterparts. Different prospects of SSWMR have been discussed including its design, application, locomotion, control, navigation and guidance. The challenges pertaining to SSWMR have been pointed out in detail, which will seek the attention of the readers, who are interested to explore this area.

Findings

Relying on the recent literature on SSWMR, research gaps are identified that should be analyzed for the development of autonomous skid-steer wheeled robots.

Originality/value

An attempt to present a comprehensive review of recent advancements in the field of WMRs and providing references to the most intriguing studies.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 13 August 2021

Mohammad Alshuniaber, Omar Alhaj, Qasem Abdallah and Haitham Jahrami

This study aims to investigate the antihypertensive effect of camel milk hydrolysate in rats with fructose-induced hypertension.

Abstract

Purpose

This study aims to investigate the antihypertensive effect of camel milk hydrolysate in rats with fructose-induced hypertension.

Design/methodology/approach

The antihypertensive effect of fermented camel milk was determined using 6 groups comprising 36 Wistar male rats. Blood pressure of rats was altered via exposure to a 10% fructose (w/v) diet in drinking water for 3 weeks before conducting 21 days of treatment. The authors conducted the experiment for short and long term using different doses of 800 and 1,200 mg/kg body weight. Serum was used to assay total cholesterol (TC), triglyceride (TG), glucose and insulin levels using standard biochemical kits.

Findings

The group that received 1,200 mg hydrolysate camel milk (HM) has significantly (p = 0.003) reduced systolic and diastolic blood pressure after a short exposure time (4–8 h). These effects were significantly (p = 0.005) comparable to the nifedipine (NIF) drug group. Similar long-term (21 days) effects on blood pressure were observed in 1,200 mg HM and NIF groups. Angiotensin-converting enzyme (ACE) activity and levels were also reduced in a correlation with blood pressure reduction only in HM1200 and HM800 treated groups. The authors observed no significant effect on blood pressure in groups receiving the 800 mg HM or 1,200 mg unhydrolyzed camel milk (UM). Rats receiving the 10% fructose diet showed significant differences from control rats regarding their blood biochemistry, including TG, TC, blood glucose and insulin levels. Rats in groups NIF, HM1200 and HM800 showed a significant (p < 0.05) reduction in serum glucose, insulin, TG and TC levels toward the baseline level.

Research limitations/implications

Further mechanistic investigation on the HM antihypertensive activity is highly recommended before suggesting HM as a product to reduce blood pressure. While drug–food interaction between HM and antihypertensive drugs, especially ACE inhibitors, is probable, UM seems not to affect blood pressure or ACE activity and therefore is expected to have no or minimal effects on the activity of other antihypertensive drugs. Investigation of ACE expression from various organs including lungs and leukocytes is highly recommended in future works using sodium dodecyl-sulfate polyacrylamide gel electrophoresis and western blot analysis or reverse transcription polymerase chain reaction.

Originality/value

No previous studies have measured the antihypertensive activity of milk hydrolysate mediated by the reduction of ACE activity and levels in plasma. Mechanisms involved in attenuating the levels of ACE warrant further investigation.

Details

Nutrition & Food Science , vol. 52 no. 2
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 3 August 2023

Abdul Wahab Hashmi, Harlal Singh Mali, Anoj Meena, Shadab Ahmad and Yebing Tian

Three-dimensional (3D) printed parts usually have poor surface quality due to layer manufacturing’s “stair casing/stair-stepping”. So post-processing is typically needed to…

Abstract

Purpose

Three-dimensional (3D) printed parts usually have poor surface quality due to layer manufacturing’s “stair casing/stair-stepping”. So post-processing is typically needed to enhance its capabilities to be used in closed tolerance applications. This study aims to examine abrasive flow finishing for 3D printed polylactic acid (PLA) parts.

Design/methodology/approach

A new eco-friendly abrasive flow machining media (EFAFM) was developed, using paper pulp as a base material, waste vegetable oil as a liquid synthesizer and natural additives such as glycine to finish 3D printed parts. Characterization of the media was conducted through thermogravimetric analysis and Fourier transform infrared spectroscopy. PLA crescent prism parts were produced via fused deposition modelling (FDM) and finished using AFM, with experiments designed using central composite design (CCD). The impact of process parameters, including media viscosity, extrusion pressure, layer thickness and finishing time, on percentage improvement in surface roughness (%ΔRa) and material removal rate were analysed. Artificial neural network (ANN) and improved grey wolf optimizer (IGWO) were used for data modelling and optimization, respectively.

Findings

The abrasive media developed was effective for finishing FDM printed parts using AFM, with SEM images and 3D surface profile showing a significant improvement in surface topography. Optimal solutions were obtained using the ANN-IGWO approach. EFAFM was found to be a promising method for improving finishing quality on FDM 3D printed parts.

Research limitations/implications

The present study is focused on finishing FDM printed crescent prism parts using AFM. Future research may be done on more complex shapes and could explore the impact of different materials, such as thermoplastics and composites for different applications. Also, implication of other techniques, such as chemical vapour smoothing, mechanical polishing may be explored.

Practical implications

In the biomedical field, the use of 3D printing has revolutionized the way in which medical devices, implants and prosthetics are designed and manufactured. The biodegradable and biocompatible properties of PLA make it an ideal material for use in biomedical applications, such as the fabrication of surgical guides, dental models and tissue engineering scaffolds. The ability to finish PLA 3D printed parts using AFM can improve their biocompatibility, making them more suitable for use in the human body. The improved surface quality of 3D printed parts can also facilitate their sterilization, which is critical in the biomedical field.

Social implications

The use of eco-friendly abrasive flow finishing for 3D printed parts can have a positive impact on the environment by reducing waste and promoting sustainable manufacturing practices. Additionally, it can improve the quality and functionality of 3D printed products, leading to better performance and longer lifespans. This can have broader economic and societal benefits.

Originality/value

This AFM media constituents are paper pulp, waste vegetable oil, silicon carbide as abrasive and the mixture of “Aloe Barbadensis Mill” – “Cyamopsis Tetragonoloba” powder and glycine. This media was then used to finish 3D printed PLA crescent prism parts. The study also used an IGWO to optimize experimental data that had been modelled using an ANN.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 5 December 2022

Bhanupratap Gaur, Samrat Sagar, Chetana M. Suryawanshi, Nishant Tikekar, Rupesh Ghyar and Ravi Bhallamudi

Ti6Al4V alloy patient-customized implants (PCI) are often fabricated using laser powder bed fusion (LPBF) and annealed to enhance the microstructural, physical and mechanical…

Abstract

Purpose

Ti6Al4V alloy patient-customized implants (PCI) are often fabricated using laser powder bed fusion (LPBF) and annealed to enhance the microstructural, physical and mechanical properties. This study aims to demonstrate the effects of annealing on the physio-mechanical properties to select optimal process parameters.

Design/methodology/approach

Test samples were fabricated using the Taguchi L9 approach by varying parameters such as laser power (LP), laser velocity (LV) and hatch distance (HD) to three levels. Physical and mechanical test results were used to optimize the parameters for fabricating as-built and annealed implants separately using Grey relational analysis. An optimized parameter set was used for fabricating biological test samples, followed by animal testing to validate the qualified parameters.

Findings

Two optimized sets of process parameters (LP = 100 W, LV = 500 mm/s and HD = 0.08 mm; and LP = 300 W, LV = 1,350 mm/s and HD = 0.08 mm) are suggested suitable for implant fabrication regardless of the inclusion of annealing in the manufacturing process. The absence of any necrosis or reaction on the local tissues after nine weeks validated the suitability of the parameter set for implants.

Practical implications

To help PCI manufacturers in parameter selection and to exclude annealing from the manufacturing process for faster implant delivery.

Originality/value

To the best of the authors’ knowledge, this is probably a first attempt that suggests LPBF parameters that are independent of inclusion of annealing in implant fabrication process.

Article
Publication date: 16 August 2021

Wenhua Huang, Juan Ren, Jinglong Jiang and J. Cheng

Quantum-dot Cellular Automata (QCA) is a new nano-scale transistor-less computing model. To address the scaling limitations of complementary-metal-oxide-semiconductor technology…

94

Abstract

Purpose

Quantum-dot Cellular Automata (QCA) is a new nano-scale transistor-less computing model. To address the scaling limitations of complementary-metal-oxide-semiconductor technology, QCA seeks to produce general computation with better results in terms of size, switching speed, energy and fault-tolerant at the nano-scale. Currently, binary information is interpreted in this technology, relying on the distribution of the arrangement of electrons in chemical molecules. Using the coplanar topology in the design of a fault-tolerant digital comparator can improve the comparator’s performance. This paper aims to present the coplanar design of a fault-tolerant digital comparator based on the majority and inverter gate in the QCA.

Design/methodology/approach

As the digital comparator is one of the essential digital circuits, in the present study, a new fault-tolerant architecture is proposed for a digital comparator based on QCA. The proposed coplanar design is realized using coplanar inverters and majority gates. The QCADesigner 2.0.3 simulator is used to simulate the suggested new fault-tolerant coplanar digital comparator.

Findings

Four elements, including cell misalignment, cell missing, extra cell and cell dislocation, are evaluated and analyzed in QCADesigner 2.0.3. The outcomes of the study demonstrate that the logical function of the built circuit is accurate. In the presence of a single missed defect, this fault-tolerant digital comparator architecture will achieve 100% fault tolerance. Also, this comparator is above 90% fault-tolerant under single-cell displacement faults and is above 95% fault-tolerant under single-cell missing defects.

Originality/value

A novel structure for the fault-tolerant digital comparator in the QCA technology was proposed used by coplanar majority and inverter. Also, the performance metrics and obtained results establish that the coplanar design can be used in the QCA circuits to produce optimized and fault-tolerant circuits.

Details

Microelectronics International, vol. 38 no. 4
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 12 August 2019

Mustafa Ayyildiz

This paper aims to discuss the utilization of artificial neural networks (ANNs) and multiple regression method for estimating surface roughness in milling medium density…

Abstract

Purpose

This paper aims to discuss the utilization of artificial neural networks (ANNs) and multiple regression method for estimating surface roughness in milling medium density fiberboard (MDF) material with a parallel robot.

Design/methodology/approach

In ANN modeling, performance parameters such as root mean square error, mean error percentage, mean square error and correlation coefficients (R2) for the experimental data were determined based on conjugate gradient back propagation, Levenberg–Marquardt (LM), resilient back propagation, scaled conjugate gradient and quasi-Newton back propagation feed forward back propagation training algorithm with logistic transfer function.

Findings

In the ANN architecture established for the surface roughness (Ra), three neurons [cutting speed (V), feed rate (f) and depth of cut (a)] were contained in the input layer, five neurons were included in its hidden layer and one neuron was contained in the output layer (3-5-1).Trials showed that LM learning algorithm was the best learning algorithm for the surface roughness. The ANN model obtained with the LM learning algorithm yielded estimation training values R2 (97.5 per cent) and testing values R2 (99 per cent). The R2 for multiple regressions was obtained as 96.1 per cent.

Originality/value

The result of the surface roughness estimation model showed that the equation obtained from the multiple regressions with quadratic model had an acceptable estimation capacity. The ANN model showed a more dependable estimation when compared with the multiple regression models. Hereby, these models can be used to effectively control the milling process to reach a satisfactory surface quality.

Details

Sensor Review, vol. 39 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 22 September 2023

Rajesh Kumar Bhushan

The purpose of this paper is to examine the quality of the turned surface. The quality of the surface produced depends on the nature of the chips, which are produced while turning…

Abstract

Purpose

The purpose of this paper is to examine the quality of the turned surface. The quality of the surface produced depends on the nature of the chips, which are produced while turning metal matrix composites. This quality is a function of the machining parameters, tool material, tool configuration and elements of the composites.

Design/methodology/approach

In this study, the turning of AA7075/15 wt.% SiC (particle size 20–40 µm) composites is investigated. Thirty experiments were conducted, and the chip-formation mechanism in turning AA7075/SiCp composites at various combinations of cutting speeds, feed and depth of cuts was studied.

Findings

It is observed from the response surface methodology-based experimentation that in turning of coarser reinforcement (particle size 20–40 µm) composites, total gross fracture occurs. This causes small slices of chips and a higher shear plane angle. The nature of chips produced at various combinations of cutting speeds, feed and depth of cuts is different. The chips generated were segmented, spiral in cylindrical form, connected C type, chips with saw tooth, curled chips, washer C type chips, half-curved segmented chips and small-radii segmented chips.

Originality/value

The novelty of this research is that, so far, very little work has been published on the detailed analysis of chips produced during turning of AA7075/15 wt.% SiC (particle size 20–40 µm) composites.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 16