Search results

1 – 6 of 6
Article
Publication date: 16 April 2024

Liezl Smith and Christiaan Lamprecht

In a virtual interconnected digital space, the metaverse encompasses various virtual environments where people can interact, including engaging in business activities. Machine…

Abstract

Purpose

In a virtual interconnected digital space, the metaverse encompasses various virtual environments where people can interact, including engaging in business activities. Machine learning (ML) is a strategic technology that enables digital transformation to the metaverse, and it is becoming a more prevalent driver of business performance and reporting on performance. However, ML has limitations, and using the technology in business processes, such as accounting, poses a technology governance failure risk. To address this risk, decision makers and those tasked to govern these technologies must understand where the technology fits into the business process and consider its limitations to enable a governed transition to the metaverse. Using selected accounting processes, this study aims to describe the limitations that ML techniques pose to ensure the quality of financial information.

Design/methodology/approach

A grounded theory literature review method, consisting of five iterative stages, was used to identify the accounting tasks that ML could perform in the respective accounting processes, describe the ML techniques that could be applied to each accounting task and identify the limitations associated with the individual techniques.

Findings

This study finds that limitations such as data availability and training time may impact the quality of the financial information and that ML techniques and their limitations must be clearly understood when developing and implementing technology governance measures.

Originality/value

The study contributes to the growing literature on enterprise information and technology management and governance. In this study, the authors integrated current ML knowledge into an accounting context. As accounting is a pervasive aspect of business, the insights from this study will benefit decision makers and those tasked to govern these technologies to understand how some processes are more likely to be affected by certain limitations and how this may impact the accounting objectives. It will also benefit those users hoping to exploit the advantages of ML in their accounting processes while understanding the specific technology limitations on an accounting task level.

Details

Journal of Financial Reporting and Accounting, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-2517

Keywords

Article
Publication date: 13 February 2024

Federico Lanzalonga, Roberto Marseglia, Alberto Irace and Paolo Pietro Biancone

Our study examines how artificial intelligence (AI) can enhance decision-making processes to promote circular economy practices within the utility sector.

Abstract

Purpose

Our study examines how artificial intelligence (AI) can enhance decision-making processes to promote circular economy practices within the utility sector.

Design/methodology/approach

A unique case study of Alia Servizi Ambientali Spa, an Italian multi-utility company using AI for waste management, is analyzed using the Gioia method and semi-structured interviews.

Findings

Our study discovers the proactive role of the user in waste management processes, the importance of economic incentives to increase the usefulness of the technology and the role of AI in waste management transformation processes (e.g. glass waste).

Originality/value

The present study enhances the circular economy model (transformation, distribution and recovery), uncovering AI’s role in waste management. Finally, we inspire managers with algorithms used for data-driven decisions.

Details

Management Decision, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0025-1747

Keywords

Article
Publication date: 3 May 2023

Rucha Wadapurkar, Sanket Bapat, Rupali Mahajan and Renu Vyas

Ovarian cancer (OC) is the most common type of gynecologic cancer in the world with a high rate of mortality. Due to manifestation of generic symptoms and absence of specific…

Abstract

Purpose

Ovarian cancer (OC) is the most common type of gynecologic cancer in the world with a high rate of mortality. Due to manifestation of generic symptoms and absence of specific biomarkers, OC is usually diagnosed at a late stage. Machine learning models can be employed to predict driver genes implicated in causative mutations.

Design/methodology/approach

In the present study, a comprehensive next generation sequencing (NGS) analysis of whole exome sequences of 47 OC patients was carried out to identify clinically significant mutations. Nine functional features of 708 mutations identified were input into a machine learning classification model by employing the eXtreme Gradient Boosting (XGBoost) classifier method for prediction of OC driver genes.

Findings

The XGBoost classifier model yielded a classification accuracy of 0.946, which was superior to that obtained by other classifiers such as decision tree, Naive Bayes, random forest and support vector machine. Further, an interaction network was generated to identify and establish correlations with cancer-associated pathways and gene ontology data.

Originality/value

The final results revealed 12 putative candidate cancer driver genes, namely LAMA3, LAMC3, COL6A1, COL5A1, COL2A1, UGT1A1, BDNF, ANK1, WNT10A, FZD4, PLEKHG5 and CYP2C9, that may have implications in clinical diagnosis.

Details

Data Technologies and Applications, vol. 58 no. 1
Type: Research Article
ISSN: 2514-9288

Keywords

Content available
Article
Publication date: 12 April 2022

Monica Puri Sikka, Alok Sarkar and Samridhi Garg

With the help of basic physics, the application of computer algorithms in the form of recent advances such as machine learning and neural networking in textile Industry has been…

1377

Abstract

Purpose

With the help of basic physics, the application of computer algorithms in the form of recent advances such as machine learning and neural networking in textile Industry has been discussed in this review. Scientists have linked the underlying structural or chemical science of textile materials and discovered several strategies for completing some of the most time-consuming tasks with ease and precision. Since the 1980s, computer algorithms and machine learning have been used to aid the majority of the textile testing process. With the rise in demand for automation, deep learning, and neural networks, these two now handle the majority of testing and quality control operations in the form of image processing.

Design/methodology/approach

The state-of-the-art of artificial intelligence (AI) applications in the textile sector is reviewed in this paper. Based on several research problems and AI-based methods, the current literature is evaluated. The research issues are categorized into three categories based on the operation processes of the textile industry, including yarn manufacturing, fabric manufacture and coloration.

Findings

AI-assisted automation has improved not only machine efficiency but also overall industry operations. AI's fundamental concepts have been examined for real-world challenges. Several scientists conducted the majority of the case studies, and they confirmed that image analysis, backpropagation and neural networking may be specifically used as testing techniques in textile material testing. AI can be used to automate processes in various circumstances.

Originality/value

This research conducts a thorough analysis of artificial neural network applications in the textile sector.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Open Access
Article
Publication date: 10 May 2023

Marko Kureljusic and Erik Karger

Accounting information systems are mainly rule-based, and data are usually available and well-structured. However, many accounting systems are yet to catch up with current…

75825

Abstract

Purpose

Accounting information systems are mainly rule-based, and data are usually available and well-structured. However, many accounting systems are yet to catch up with current technological developments. Thus, artificial intelligence (AI) in financial accounting is often applied only in pilot projects. Using AI-based forecasts in accounting enables proactive management and detailed analysis. However, thus far, there is little knowledge about which prediction models have already been evaluated for accounting problems. Given this lack of research, our study aims to summarize existing findings on how AI is used for forecasting purposes in financial accounting. Therefore, the authors aim to provide a comprehensive overview and agenda for future researchers to gain more generalizable knowledge.

Design/methodology/approach

The authors identify existing research on AI-based forecasting in financial accounting by conducting a systematic literature review. For this purpose, the authors used Scopus and Web of Science as scientific databases. The data collection resulted in a final sample size of 47 studies. These studies were analyzed regarding their forecasting purpose, sample size, period and applied machine learning algorithms.

Findings

The authors identified three application areas and presented details regarding the accuracy and AI methods used. Our findings show that sociotechnical and generalizable knowledge is still missing. Therefore, the authors also develop an open research agenda that future researchers can address to enable the more frequent and efficient use of AI-based forecasts in financial accounting.

Research limitations/implications

Owing to the rapid development of AI algorithms, our results can only provide an overview of the current state of research. Therefore, it is likely that new AI algorithms will be applied, which have not yet been covered in existing research. However, interested researchers can use our findings and future research agenda to develop this field further.

Practical implications

Given the high relevance of AI in financial accounting, our results have several implications and potential benefits for practitioners. First, the authors provide an overview of AI algorithms used in different accounting use cases. Based on this overview, companies can evaluate the AI algorithms that are most suitable for their practical needs. Second, practitioners can use our results as a benchmark of what prediction accuracy is achievable and should strive for. Finally, our study identified several blind spots in the research, such as ensuring employee acceptance of machine learning algorithms in companies. However, companies should consider this to implement AI in financial accounting successfully.

Originality/value

To the best of our knowledge, no study has yet been conducted that provided a comprehensive overview of AI-based forecasting in financial accounting. Given the high potential of AI in accounting, the authors aimed to bridge this research gap. Moreover, our cross-application view provides general insights into the superiority of specific algorithms.

Details

Journal of Applied Accounting Research, vol. 25 no. 1
Type: Research Article
ISSN: 0967-5426

Keywords

Open Access
Article
Publication date: 19 December 2023

Qinxu Ding, Ding Ding, Yue Wang, Chong Guan and Bosheng Ding

The rapid rise of large language models (LLMs) has propelled them to the forefront of applications in natural language processing (NLP). This paper aims to present a comprehensive…

1369

Abstract

Purpose

The rapid rise of large language models (LLMs) has propelled them to the forefront of applications in natural language processing (NLP). This paper aims to present a comprehensive examination of the research landscape in LLMs, providing an overview of the prevailing themes and topics within this dynamic domain.

Design/methodology/approach

Drawing from an extensive corpus of 198 records published between 1996 to 2023 from the relevant academic database encompassing journal articles, books, book chapters, conference papers and selected working papers, this study delves deep into the multifaceted world of LLM research. In this study, the authors employed the BERTopic algorithm, a recent advancement in topic modeling, to conduct a comprehensive analysis of the data after it had been meticulously cleaned and preprocessed. BERTopic leverages the power of transformer-based language models like bidirectional encoder representations from transformers (BERT) to generate more meaningful and coherent topics. This approach facilitates the identification of hidden patterns within the data, enabling authors to uncover valuable insights that might otherwise have remained obscure. The analysis revealed four distinct clusters of topics in LLM research: “language and NLP”, “education and teaching”, “clinical and medical applications” and “speech and recognition techniques”. Each cluster embodies a unique aspect of LLM application and showcases the breadth of possibilities that LLM technology has to offer. In addition to presenting the research findings, this paper identifies key challenges and opportunities in the realm of LLMs. It underscores the necessity for further investigation in specific areas, including the paramount importance of addressing potential biases, transparency and explainability, data privacy and security, and responsible deployment of LLM technology.

Findings

The analysis revealed four distinct clusters of topics in LLM research: “language and NLP”, “education and teaching”, “clinical and medical applications” and “speech and recognition techniques”. Each cluster embodies a unique aspect of LLM application and showcases the breadth of possibilities that LLM technology has to offer. In addition to presenting the research findings, this paper identifies key challenges and opportunities in the realm of LLMs. It underscores the necessity for further investigation in specific areas, including the paramount importance of addressing potential biases, transparency and explainability, data privacy and security, and responsible deployment of LLM technology.

Practical implications

This classification offers practical guidance for researchers, developers, educators, and policymakers to focus efforts and resources. The study underscores the importance of addressing challenges in LLMs, including potential biases, transparency, data privacy, and responsible deployment. Policymakers can utilize this information to shape regulations, while developers can tailor technology development based on the diverse applications identified. The findings also emphasize the need for interdisciplinary collaboration and highlight ethical considerations, providing a roadmap for navigating the complex landscape of LLM research and applications.

Originality/value

This study stands out as the first to examine the evolution of LLMs across such a long time frame and across such diversified disciplines. It provides a unique perspective on the key areas of LLM research, highlighting the breadth and depth of LLM’s evolution.

Details

Journal of Electronic Business & Digital Economics, vol. 3 no. 1
Type: Research Article
ISSN: 2754-4214

Keywords

1 – 6 of 6