Search results

1 – 10 of 692
Article
Publication date: 10 March 2022

Vishal Ashok Wankhede and S. Vinodh

The purpose is to assess Industry 4.0 (I4.0) readiness index using fuzzy logic and multi-grade fuzzy approaches in an automotive component manufacturing organization.

Abstract

Purpose

The purpose is to assess Industry 4.0 (I4.0) readiness index using fuzzy logic and multi-grade fuzzy approaches in an automotive component manufacturing organization.

Design/methodology/approach

I4.0 implies fourth industrial revolution that necessitates vital challenges to be dealt with. In this viewpoint, this article presents the evaluation of I4.0 Readiness Index. The evaluation includes two levels with appropriate criteria and factors. Fuzzy logic approach is used for assessment. Furthermore, the results obtained from fuzzy logic have been benchmarked with multi-grade fuzzy approach.

Findings

The proposed assessment model has successfully utilized fuzzy logic approach for assessment of I4.0 readiness index of automotive component manufacturing organization. Based on fuzzy logic approach, readiness index of I4.0 has been found to be (4.74, 6.26, 7.80) which is further benchmarked using multi-grade fuzzy approach. Industry 4.0 readiness index obtained from multi-grade fuzzy approach is 6.258 and thus, validated. Furthermore, 20 weaker areas have been identified and improvement suggestions are provided.

Research limitations/implications

The assessment module include two levels (Six Criteria and 50 Factors). The assessment model could be expanded based on advancements in industrial developments. Therefore, future researchers could utilize findings of the readiness model to further develop multi-level assessment module for Industry 4.0 readiness in organization. The developed readiness model helped researchers in understanding the methodology to assess I4.0 readiness of organization.

Practical implications

The model has been tested with reference to automotive component manufacturing organization and hence the inferences derived have practical relevance. Furthermore, the benchmarking strategy adopted in the present study is simple to understand that makes the model unique and could be applied to other organizations. The results obtained from the study reveal that fuzzy logic-based readiness model is efficient to assess I4.0 readiness of industry.

Originality/value

The development of model for I4.0 readiness assessment and further analysis is the original contribution of the authors. The developed fuzzy logic based I4.0 readiness model indicated the readiness level of an organization using I4RI. Also, the model provided weaker areas based on FPII values which is essential to improve the readiness of organization that already began with the adoption of I4.0 concepts. Further modification in the readiness model would help in enhancing I4.0 readiness of organization. Moreover, the benchmarking strategy adopted in the study i.e. MGF would help to validate the computed I4.0 readiness.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 18 May 2020

V. Vaishnavi and M. Suresh

Lean Six Sigma (LSS) is a widely accepted business improvement methodology in healthcare, which aims to improve operations and quality and reduce cost, medical errors and…

Abstract

Purpose

Lean Six Sigma (LSS) is a widely accepted business improvement methodology in healthcare, which aims to improve operations and quality and reduce cost, medical errors and waiting time by combing the principles of lean thinking with Six Sigma methodologies. To implement LSS successfully in healthcare organizations it is necessary to know the readiness level before starting the change process. Thus, the purpose of this paper is to assess the readiness level for the implementation of LSS in healthcare using a fuzzy logic approach.

Design/methodology/approach

The current study uses a fuzzy logic approach to develop an assessment model for readiness to implement LSS. The conceptual model for readiness is developed with 5 enablers, 16 criteria and 48 attributes identified from the literature review. The current study does the study in a medium-size hospital from India.

Findings

The fuzzy readiness for implementation of LSS index (FRLSSI) and fuzzy performance importance index (FPII) are calculated to identify the readiness level for the implementation of LSS in the case hospital. The FRLSSI is computed as average ready with (3.30, 5.06 and 6.83) and the FPII computed helps to identify 15 weaker attributes from 48 attributes.

Research limitations/implications

The current study uses only one hospital for study. In the future, the model can be tested in many hospitals.

Practical implications

The current study would be used by the managers of a healthcare organization to identify the readiness level of their organization to implement LSS. The proposed model is based on the identification of enablers, criteria and attributes to assess the readiness level of a healthcare organization and it helps to improve the readiness level to implement LSS effectively.

Originality/value

The present study contributes to the knowledge of readiness for the implementation of LSS in a healthcare organization. The conceptual model is developed for assessing the readiness level of a healthcare organization and it helps to improve the readiness level for successful implementation of LSS. Weaker attributes are identified and necessary corrective actions should be taken by the management to improve the readiness. The continuation of the assessment readiness model over a period of time would help to improve the readiness level of healthcare for the implementation of LSS.

Details

International Journal of Lean Six Sigma, vol. 12 no. 2
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 6 July 2012

S. Vinodh and S. Aravindraj

The purpose of this paper is to report a research on the development of axiomatic modeling of a lean manufacturing system.

1372

Abstract

Purpose

The purpose of this paper is to report a research on the development of axiomatic modeling of a lean manufacturing system.

Design/methodology/approach

A conceptual model for lean manufacturing has been adopted. A hierarchical structure has been developed to model the design process of a lean manufacturing system composed of functional requirements, design parameters and process variables.

Findings

The theory of axiomatic design advocates the creation of process variables by mapping the design parameters in the process domain. This article serves as an efficient guideline for the design process to clarify the tools, methods and resources of designing lean manufacturing system.

Research limitations/implications

The implications of the axiomatic model has been derived based on the experiences gained from a single manufacturing organization. Yet, the findings and contributions of this research work would be useful to the captains of thee majority of the manufacturing companies situated in the world.

Practical implications

The axiomatic modeling approach serves as an efficient guideline for the design process to clarify the tools, methods and resources of designing a lean manufacturing system of an Indian rotary switches manufacturing organization.

Originality/value

The conceptual model of lean manufacturing has been developed from literature. Based on the conceptual model, the hierarchical model for axiomatic approach has been developed. The contributions and the inferences are original and add value to the state of the art approaches.

Details

Journal of Engineering, Design and Technology, vol. 10 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 24 October 2021

Vishal Ashok Wankhede and S. Vinodh

The manufacturing domain presently focusing on Industry 4.0 (I4.0). One such domain is the automotive sector. The purpose of this study is to analyse the I4.0 research…

Abstract

Purpose

The manufacturing domain presently focusing on Industry 4.0 (I4.0). One such domain is the automotive sector. The purpose of this study is to analyse the I4.0 research studies with a focus on the automotive sector using a systematic literature review (SLR).

Design/methodology/approach

This paper presents a SLR of previous studies on I4.0 characteristics from its inception to performance measures focusing on the automotive sector. A total of 90 papers published in reputed journals during 2014–2020 were collected from major publishers, namely, Elsevier, Springer, Taylor and Francis, Emerald, Institute of Electrical and Electronics, MDPI, etc.

Findings

The findings of the study provided vital insights on various perspectives of I4.0 in an automotive organization. Moreover, this systematic analysis would help the automotive industry policymakers in implementing I4.0 in an organization. Based on the SLR, a conceptual framework is established to guide industry practitioners towards I4.0 implementation. The review findings could be used to carry out future studies in assessing the readiness of I4.0 in the organization with the help of a survey.

Research limitations/implications

The limitation of the study is in the adoption of the sampling approach. In the present study, conference papers and refereed journals have been considered based on the relevance of I4.0 in the automotive industry. As I4.0 is a growing concept, non-refereed articles, book chapters and white papers may cover practical aspects regarding I4.0 implementation that need to be considered for depth analysis. Moreover, the framework needs to be validated with various automotive industries for ensuring practical validity.

Originality/value

The unique contribution of the study is the SLR of I4.0 in manufacturing with a focus on the automotive sector.

Details

International Journal of Lean Six Sigma, vol. 13 no. 3
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 16 July 2021

Anilkumar Malaga and S. Vinodh

The purpose of the article is to report a study on evaluation of smart manufacturing (SM) performance using a grey theory-based approach.

Abstract

Purpose

The purpose of the article is to report a study on evaluation of smart manufacturing (SM) performance using a grey theory-based approach.

Design/methodology/approach

In total, 30 criteria and 79 attributes for SM performance have been developed. A grey theory-based approach has been used for SM performance evaluation. The grey index has been calculated, and weaker areas have been derived. Performance level of SM has been evaluated using the Euclidean distance approach.

Findings

The SM performance index is found to be (3.036, 12.296). The ideal grey performance importance index (GPII) is obtained as (3.025, 4.875). The level of visibility and traceability, vertical integration, lead time and configuration data espionage and control ability are strong performing attributes. Integration abilities of services and manufacturing systems, ability of self-control, worker and raw material productivity, collaboration among buyers and suppliers and dynamic scheduling are identified as weaker areas, and suggestions for improvement have been derived. SM performance level has been identified as “Good.”

Research limitations/implications

Additional performance measures could be included as a part of evaluation. Practitioners can overcome weaker areas in the early phase. Management achieves confidence and practitioners attain success in implementation of SM in industry through the developed SM performance indexing system.

Originality/value

Identification of SM performance measures and analysis of SM performance is the original contribution of the authors. The developed approach assists practitioners and managers to focus more on specific areas for performance improvement.

Details

Grey Systems: Theory and Application, vol. 12 no. 3
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 30 September 2014

Sakthivel Aravindraj and S. Vinodh

– The purpose of this study was to develop a 40-criteria agility assessment model and explore its practical feasibility in an industrial scenario.

Abstract

Purpose

The purpose of this study was to develop a 40-criteria agility assessment model and explore its practical feasibility in an industrial scenario.

Design/methodology/approach

Agile manufacturing (AM) principles enable organizations to understand customer needs and incorporate the necessary changes in product- and processes-oriented approaches. In this research study, a 40-criteria agility assessment model was developed. The agility assessment model was subjected to investigation in an Indian relays manufacturing organization.

Findings

The research study indicates that the organization is agile. Besides computing agility level, the gaps across agile criteria have been identified and actions for agility improvement were subjected to implementation in the case organization.

Research limitations/implications

The 40-criteria agility assessment model was subjected to investigation in a single manufacturing organization. In future, more number of studies could be conducted.

Practical implications

To acquire agile characteristics, modern organizations should assess the agility level at which they operate. In this context, the agility assessment model was developed.

Originality/value

The agility assessment tool presented in this paper consists of 40 agile criteria, which are well supported by the research findings reported in literature. Hence, the developed 40-criteria agile model is original and novel.

Details

Journal of Engineering, Design and Technology, vol. 12 no. 4
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 11 August 2022

B.G. Aadithya, P. Asokan and S. Vinodh

This research aims to identify lean tools and techniques that are needed to be implemented to improve the performance in the fabrication industry. The objective is to find…

Abstract

Purpose

This research aims to identify lean tools and techniques that are needed to be implemented to improve the performance in the fabrication industry. The objective is to find the wastes in manufacturing processes using value stream mapping (VSM) and prioritize the lean tools suitable to enable the attainment of leanness and streamline the processes.

Design/methodology/approach

VSM tool is applied in the industry to construct the current state map, identify improvement proposals and implement in future state. Fuzzy technique for order performance by similarity to ideal solution (TOPSIS), a multi-criteria decision-making technique (MCDM), is used to prioritize the identified improvement proposals. This study observed that mistake-proof processing and layout organization are the two techniques with the top priority that needs further improvement to enhance the leanness of the organization.

Findings

Upon successful implementation, the cycle time is reduced by 14.97%, and total inventory is reduced by 45.67% which leads to the improvement of value addition from 5.88 to 9.21%. Although lean has been adopted for many years, implementation of lean in the fabrication industry has been limited.

Practical implications

This study addresses the challenges in terms of implementing lean in fabrication industries and practical implications of lean tools and techniques and the prioritization of lean concepts against various lean criteria to enable leanness.

Originality/value

The deployment of improvement prioritization tool integrated with VSM in the context of a fabrication industry is the original contribution of the authors.

Details

The TQM Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1754-2731

Keywords

Article
Publication date: 5 June 2017

Karthik Bharathi S., S. Vinodh, Sriharsha Devarapu and Goutham Siddhamshetty

The purpose of the study reported in the paper is to apply a structured problem-solving approach based on the Lean approach to analyse weld defects and derive appropriate…

1853

Abstract

Purpose

The purpose of the study reported in the paper is to apply a structured problem-solving approach based on the Lean approach to analyse weld defects and derive appropriate solutions.

Design/methodology/approach

Manufacturing organisations involved in welding fabrication are expected to reduce weld defects to attain competitive advantage. Weld defects need to be systematically analysed for valve performance enhancement. In this research study, Lean approach is used to reduce variations and waste by annihilating the root causes for failures that occur during submerged arc welding (SAW) process.

Findings

The deployment of solutions facilitated weld defect reduction and substantial financial savings for the organisation.

Research limitations/implications

The framework has been test-implemented for analysing variations and wastes generated in the SAW process. In future, studies could be conducted for assessing different welding processes.

Practical implications

The proposed Lean framework has been successfully implemented in a large-scale manufacturing unit involved in fabrication work.

Originality/value

Lean framework has been test-implemented in a large-scale manufacturing organisation involved in weld fabrication work.

Details

International Journal of Lean Six Sigma, vol. 8 no. 2
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 5 March 2018

Ben Ruben R., Vinodh S. and Asokan P.

The purpose of this study is to prioritize and analyze the barriers that affect Lean Six Sigma (LSS) adoption with environmental considerations.

Abstract

Purpose

The purpose of this study is to prioritize and analyze the barriers that affect Lean Six Sigma (LSS) adoption with environmental considerations.

Design/methodology/approach

To find interrelationships and mutual influences among the identified barriers, an integrated interpretive structural modeling (ISM) and Fuzzy MICMAC (Matrice d’Impacts Croisés Multiplication Appliqués à un Classement approach was applied). In total, 20 crucial barriers that affect LSS adoption with environmental considerations have been derived from the literature and in consultation with experts hailing from the industry and academia.

Findings

Based on the analysis, the most dominant and dependent barriers that affects LSS adoption with environmental considerations have been identified. The barriers, namely, “lack of top management commitment”, “lack of training and education” and “lack of funds for green projects”, occupy the base segment of the ISM hierarchy; the barriers, namely, “difficulty in adopting environmental strategies”, “stringent government policies”, “negative attitude towards sustainability concepts”, “improper communication” and “lack of defect monitoring analysis”, occupy the top level of the ISM hierarchy.

Practical implications

The analysis helped in identifying and prioritizing the barriers that affect LSS adoption with environmental considerations using a mathematical approach. This approach is also helpful for practitioners to focus on removing the key dominant barriers and to enable LSS adoption with environmental considerations smoothly.

Originality/value

The analysis helped in identifying and prioritizing the barriers that affect LSS adoption with environmental considerations using the Fuzzy MICMAC approach which has not been attempted in the past. The structural model is developed holistically based on the inputs gathered from practitioners and academicians to ensure practical validity. Also, this approach is helpful for practitioners to focus on removing the key dominant barriers and enabling them to deploy LSS concepts with environmental considerations smoothly.

Details

International Journal of Lean Six Sigma, vol. 9 no. 1
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 11 October 2021

Vishal Ashok Wankhede and S. Vinodh

The purpose of this paper is to report a study on analysis of barriers for cyber-physical system (CPS) adoption in small and medium enterprises (SMEs).

Abstract

Purpose

The purpose of this paper is to report a study on analysis of barriers for cyber-physical system (CPS) adoption in small and medium enterprises (SMEs).

Design/methodology/approach

In Industry 4.0 scenario, Indian SMEs are struggling to bring their manufacturing processes in line with large manufacturing sector. CPS is considered as the backbone of Industry 4.0, and its implementation in SMEs will make significant changes pertaining to manufacturing automation. However, due to the lack of a proper CPS implementation strategy, SMEs face many challenges in its adoption. Hence, this study identified 18 possible barriers and seven performance measures pertaining to CPS adoption in Indian SMEs. Interpretive ranking process (IRP) is used to develop the contextual relationships among CPS barriers. IRP process include structured step-by-step matrix-based approach in which dominance among various alternatives is determined using performance measures developing a structured ranking model.

Findings

The developed IRP model revealed that CPS barriers “Lack of skilled manpower (CPSB2)” and “Lack of robustness with respect to environmental conditions in automotive environments (CPSB7)” are the most significant barriers (top two) hindering CPS adoption in SMEs.

Research limitations/implications

In the present study, barriers for CPS adoption has been analyzed. In future, barriers for adopting other Industry 4.0 technologies could be analyzed.

Practical implications

The present research work is one of the few studies which analyzed CPS barriers in SMEs and provided improvement suggestions to the most significant barriers for its smooth adoption. The managerial and practical implications have been derived.

Originality/value

The analysis of barriers for CPS adoption in SMEs is the original contribution of the authors.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

1 – 10 of 692