Search results

1 – 10 of over 1000
Article
Publication date: 27 December 2022

Zhao Alexandre Huang and Rui Wang

The aim of this study was to examine the early stages of the COVID-19 outbreak and the international communication management of Chinese diplomats as a case for extending the…

Abstract

Purpose

The aim of this study was to examine the early stages of the COVID-19 outbreak and the international communication management of Chinese diplomats as a case for extending the definition of intermestic public diplomacy. The goal was to reveal how Beijing subtly used both domestic and foreign social media to organize a network for communication about COVID-19 and purposefully soften the highly centralized and hierarchical political propaganda of the Communist Party of China (CPC).

Design/methodology/approach

Based on the literature on digital public diplomacy, the authors applied the existing concept of intermestic to Chinese politics in order to demonstrate the digitalization of public diplomacy, along with its forms and strategies under an authoritarian regime. A hybrid methodology combining quantitative network analysis and qualitative discourse analysis permits examination of China's intermestic online communication network dynamics, shedding light on how such an intermestic practice promoted Chinese values and power to international publics in the early stages of the COVID-19 crisis.

Findings

The authors’ findings extend the implications of intermestic public diplomacy from a democratic context to an authoritarian one. By analyzing the content of public diplomacy and para-diplomatic social media accounts in China and abroad at the beginning of the COVID-19 crisis, the authors outlined China's early crisis management, explaining its intermestic public diplomacy transmission modes and strategies. Moreover, the authors identified changes in the narrative strategies of Chinese diplomats and journalists during this process.

Social implications

The findings of this study underline that Beijing established a narrative-making virtual communication structure for disseminating favorable Chinese strategic narratives and voices through differentiated communication on domestic and foreign social media platforms. Such intermestic communication strategies were particularly evident and even further weaponized by Beijing in its large-scale Wolf Warrior diplomacy in the spring of 2020. Thus, the study’s findings help readers understand how China digitalized its public diplomacy, its digital communication patterns and strategies.

Originality/value

On the one hand, geopolitical uncertainty and the popularity of social media have contributed to the evolution of the intermestic model of public diplomacy. This model allows actors to coordinate homogenous and differentiated communication practices to deploy their influence. On the other hand, the authors did not examine how intermestic audiences perceive and receive public diplomacy practices. In future studies, scholars should measure the agenda-setting capacity of diplomatic actors by examining the effects of such intermestic communication efforts.

Details

Journal of Communication Management, vol. 27 no. 2
Type: Research Article
ISSN: 1363-254X

Keywords

Article
Publication date: 2 May 2023

Huan Liu, Rui Wang, Junyao Wang, Xingyu Chen, Yunpeng Li, Bowen Cui, Tianhong Lang and Weihua Zhu

Flexible pressure sensor arrays have promising applications in analog haptics, reconfiguration of sensory functions, artificial intelligence, wearable devices and human-computer…

Abstract

Purpose

Flexible pressure sensor arrays have promising applications in analog haptics, reconfiguration of sensory functions, artificial intelligence, wearable devices and human-computer interaction. The force disturbance generated by the connecting material between the sensor array units will reduce the detection accuracy of the unit. The purpose of this paper is to propose a flexible pressure sensor with interference immunity capability. A C-type bridge flexible piezoelectric structure is used to improve the pressure perturbation. The interference immunity capability of the sensor has been improved.

Design/methodology/approach

In this paper, a C-type pressure sensor array structure by rapid injection moulding is manufactured through the positive piezoelectric effect of a piezoelectric material. The feasibility of C-type interference immunity structure in a flexible sensor array is verified by further analysis and experiment. A flexible pressure sensor array with C-type interference immunity structure has been proposed.

Findings

In this paper, we present the results of the perturbation experiment results of the C-type pressure sensor array, showing that the perturbation error is less than 8%. The test of the flexible sensor array show that the sensor can identify the curved angle of up to 120 °, and the output sensitivity of the sensor in the horizontal state reaches 0.12 V/N, and the sensor can withstand the pressure of 80 N. The flexible sensor can work stably in the stretch rate range of 0–8.6% and the stretch length range of 0–6 mm.

Originality/value

In this paper, C-type pressure sensor array structure is fabricated by rapid injection moulding for the first time. The research in this paper can effectively reduce the disturbance of input pressure on the sensor’s internal array and improve the output accuracy. The sensor can intuitively reflect the number of fingers sliding on the sensor by the order in which the maximum voltage appears. Due to the strong interference immunity capability and flexibility of the flexible sensor array mechanism, it has a broad application prospect in the practical fields of haptic simulation, perceptual function reconstruction, artificial intelligence, wearable devices and human–computer interaction.

Article
Publication date: 4 July 2022

Junyao Wang, Xingyu Chen, Huan Liu, Gongchen Sun, Yunpeng Li, Bowen Cui, Tianhong Lang, Rui Wang, Yiying Zhang and Maocheng Mao Sun

The purpose of this study is to provide a micro-nano chip automatic alignment system. Used for micron and nanometer channel alignment of microfluidic chip.

Abstract

Purpose

The purpose of this study is to provide a micro-nano chip automatic alignment system. Used for micron and nanometer channel alignment of microfluidic chip.

Design/methodology/approach

In this paper, combined with the reconstructed micro–nanoscale Hough transform theory, a “clamp–adsorb–rotate” chip alignment method is proposed. The designed alignment system includes a microscopic identification device, a clamping device and a suction device. After assembly, the straightness of the linear slide rail in the horizontal and vertical directions was tested, respectively. The results show that in the horizontal and vertical directions, the linearity error of the linear slide is +0.29 and 0.30 µm, respectively, which meets the requirement of chip alignment accuracy of 15 µm. In the direction of rotation, the angular error between the microchannel and the nanochannel is ±0.5°. In addition, an alignment flow experiment of the chip is designed. The results demonstrate that the closer the angle between the microchannel and the nanochannel is to 90°, the fluid fills the entire channel. Compared with the conventional method, the method and the assembly system realize fully automatic double-layer chip alignment.

Findings

A mechanical device designed by Hough transform theory can realize microfluidic chip alignment at nanometer and micron level.

Originality/value

The automatic alignment device adopts Hough transform principle and can be used for microfluidic chip alignment.

Details

Sensor Review, vol. 42 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 17 October 2016

Zhang Hai-ou, Rui Wang, Liye Liang and Wang Gui-lan

The paper aims to introduce the fabrication of a medium steel aircraft part by hybrid deposition and micro-rolling technology (HDMR) and illustrate its advantages, microstructure…

Abstract

Purpose

The paper aims to introduce the fabrication of a medium steel aircraft part by hybrid deposition and micro-rolling technology (HDMR) and illustrate its advantages, microstructure features and mechanical properties of the part.

Design/methodology/approach

The HDMR technology contains two procedures happening almost at the same time: the welding deposition procedure and then the micro-rolling procedure. It takes the gas metal arc welding as the heat source to melt a metal wire and deposit metal in the welding deposition procedure. The metal just deposited is rolled synchronously by a micro roller following the welding torch in micro-rolling procedure almost at the same time layer by layer. The paper presents a contrast of the grain morphology of metal parts produced respectively by HDMR and freedom arc deposition (FAD) and the mechanical properties of metal parts of the same metal from HDMR casting, forging and FAD methods.

Findings

HDMR breaks the dendrite grain of welding beads into the fine crisscross grains. The mechanical properties of metal parts are improved distinctly by the micro-rolling procedure compared to casting, forging and FAD.

Practical implications

In addition, the application of HDMR technology has succeeded in the fabrication of an eligible aircraft metal part, which is quite difficult to achieve using other additive manufacturing (AM) or casting technologies.

Originality/value

HDMR has the advantage of equiponderance manufacturing by micro-rolling compared to other AM technologies. The metal part fabricated by HDMR technology obtains the fine crisscross grains and brings hope for AM metal components with excellent mechanical properties for aircraft applications.

Article
Publication date: 19 February 2020

Yu-Ting L.V., Yong Li, De-Xing Yang, Zhenhua Bai, Jinlong Li and Rui Wang

Continuous annealing (CA) units usually lack a physical shapemeter; consequently, real-time display and closed-loop control of the strip shape are impossible to achieve.

Abstract

Purpose

Continuous annealing (CA) units usually lack a physical shapemeter; consequently, real-time display and closed-loop control of the strip shape are impossible to achieve.

Design/methodology/approach

A shape model for the CA process is established in this study. Specifically, a virtual shapemeter and closed-loop control system based on the advanced parameter acquisition system and information transmission of CA units are developed in C++ programming language. This system realises real-time dynamic shape display, closed-loop control and shape prediction by collecting raw data of steel coils and parameters during CA.

Findings

Field test results show that the shape predicted by the virtual shapemeter coincides with the measured shape by over 90 per cent, which fully meets the precision requirement of industrial applications.

Originality/value

Moreover, shape quality is effectively improved without increasing hardware investments.

Details

Engineering Computations, vol. 37 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 14 December 2023

Huijuan Zhou, Rui Wang, Dongyang Weng, Ruoyu Wang and Yaoqin Qiao

The interruption event will seriously affect the normal operation of urban rail transit lines,causing a large number of passengers to be stranded in the station and even making…

Abstract

Purpose

The interruption event will seriously affect the normal operation of urban rail transit lines,causing a large number of passengers to be stranded in the station and even making the train stranded in the interval between stations. This study aims to reduce the impact of interrupt events and improve service levels.

Design/methodology/approach

To address this issue, this paper considers the constraints of train operation safety, capacity and dynamic passenger flow demand. It proposes a method for adjusting small loops during interruption events and constructs a train operation adjustment model with the objective of minimizing the total passenger waiting time. This model enables the rapid development of train operation plans in interruption scenarios, coordinating train scheduling and line resources to minimize passenger travel time and mitigate the impact of interruptions. Regarding the proposed train operation adjustment model, an improved genetic algorithm (GA) is designed to solve it.

Findings

The model and algorithm are applied to a case study of interruption events on Beijing Subway Line 5. The results indicate that after solving the constructed model, the train departure intervals can be maintained between 1.5 min and 3 min. This ensures both the safety of train operations on the line and a good match with passengers’ travel demands, effectively reducing the total passenger waiting time and improving the service level of the urban rail transit system during interruptions. Compared to the GA algorithm, the algorithm proposed in this paper demonstrates faster convergence speed and better computational results.

Originality/value

This study explicitly outlines the adjustment method of using short-turn operation during operational interruptions, with train departure times and station stop times as decision variables. It takes into full consideration safety constraints on train operations, train capacity constraints and dynamic passenger demand. It has constructed a train schedule optimization model with the goal of minimizing the total waiting time for all passengers in the system.

Article
Publication date: 8 October 2019

Rui Wang, Haiou Zhang, Wang Gui-Lan and Xushan Zhao

The wire and arc additive manufacturing (WAAM) is a promising technology, but the parts are mostly manufactured on the plane and along the vertical direction. The purpose of this…

Abstract

Purpose

The wire and arc additive manufacturing (WAAM) is a promising technology, but the parts are mostly manufactured on the plane and along the vertical direction. The purpose of this paper is to propose a cylindrical slicing and manufacturing method.

Design/methodology/approach

For revolved parts, e.g. blades of a propeller, instead of planes, a series of cylindrical surfaces intersect with the STL model of the part. The generated slicing layers lie on the cylindrical surface, and then these spatial contours are unfolded onto the plane by the use of the cylindrical coordinate system. A deposition system based on an NC machine is established to examine deposition paths. The temperature and stress of part of two deposition orders are analyzed using the finite element method.

Findings

The scan parallel path and contour offset path are not suitable to fabricate blades directly. The hybrid of two types of paths and the hybrid of skeleton and contour offset paths are capable of forming blades without gaps. Deposition symmetrically can decrease the deformation of the propeller.

Originality/value

The slicing algorithm is simply implemented and practicable for any parts. The recognition of gaps and supplementary skeleton path can guarantee the full deposition of contour offset paths.

Details

Rapid Prototyping Journal, vol. 26 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 November 2020

Qi Xiao, Rui Wang, Hongyu Sun and Limin Wang

The paper aims to build a new objective evaluation method of fabric pilling by combining an integrated image analysis technology with a deep learning algorithm.

307

Abstract

Purpose

The paper aims to build a new objective evaluation method of fabric pilling by combining an integrated image analysis technology with a deep learning algorithm.

Design/methodology/approach

Series of image analysis techniques were adopted. First, a Fourier transform transformed images into the frequency domain. The optimal resolution matrix of an exponential high-pass filter was determined by combining the energy algorithm. Second, the multidimensional discrete wavelet transform determined the optimal division level. Third, the iterative threshold method was used to enhance images to obtain a complete and clear pilling ball images. Finally, the deep learning algorithm was adopted to train data from pilling ball images, and the pilling levels were classified according to the learning features.

Findings

The paper provides a new insight about how to objectively evaluate fabric pilling grades. Results of the experiment indicate that the proposed objective evaluation method can obtain clear and complete pilling information and the classification accuracy rate of the deep learning algorithm is 94.2%, whose structures are rectified linear unit (ReLU) activation function, four hidden layers, cross-entropy learning rules and the regularization method.

Research limitations/implications

Because the methodology of the paper is based on woven fabric, the research study’s results may lack generalizability. Therefore, researchers are encouraged to test other kinds of fabric further, such as knitted and unwoven fabrics.

Originality/value

Combined with a series of image analysis technology, the integrated method can effectively extract clear and complete pilling information from pilled fabrics. Pilling grades can be classified by the deep learning algorithm with learning pilling information.

Details

International Journal of Clothing Science and Technology, vol. 33 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 5 December 2023

Yuting Lv, Yaojie Liu, Rui Wang, Hongyao Yu, Zhongnan Bi, Guohao Liu and Guangbao Sun

This paper aims to design a novel TiC/GTD222 nickel-based high-temperature alloy with excellent hot corrosion resistance by incorporating appropriate amounts of C, Al and Ti…

Abstract

Purpose

This paper aims to design a novel TiC/GTD222 nickel-based high-temperature alloy with excellent hot corrosion resistance by incorporating appropriate amounts of C, Al and Ti elements into GTD222 alloy.

Design/methodology/approach

The composite material was prepared using the selective laser melting (SLM) technology, followed by a hot isostatic pressing (HIP) treatment. Subsequently, the composite underwent a hot corrosion test in a 75% Na2SO4 + 25% NaCl mixed salt environment at 900 °C.

Findings

The HIP-SLMed TiC/GTD222 composite exhibits a relatively low weight loss rate. First, the addition of alloying elements facilitates the formation of multiple protective oxide films rich in Al, Ti and Cr. These oxide films play a crucial role in enhancing the material’s resistance to hot corrosion. Second, the HIP treatment results in a reduction of grain size in the composite and an increased number of grain boundaries, which further promote the formation of protective films.

Originality/value

The hot corrosion behavior of the TiC/GTD222 nickel-based composite material prepared through SLM and HIP processing has not been previously studied. This research provides a new approach for designing nickel-based superalloys with excellent hot corrosion resistance.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 10 October 2023

Ai Su, Xiaotong Cai, Xue-Song Liu, Xiang-Nan Tao, Lei Chen and Rui Wang

The development of an effective corporate vision is a necessary issue for corporate performance, and it is a key issue for corporate sustainable development as well. The…

Abstract

Purpose

The development of an effective corporate vision is a necessary issue for corporate performance, and it is a key issue for corporate sustainable development as well. The recognition of questions like “what is the role of corporate vision in corporate performance” is directly related to the attitude and practice of entrepreneurs and managers toward the development of corporate vision as well as the effectiveness of the corporate vision itself. To better answer the questions concerning the role of corporate vision development and effectively guide the practice of corporations, the authors study the pathways and mechanisms by which corporate visions operate to assist businesses in achieving high performance.

Design/methodology/approach

The article completes the construction of indicators to measure each dimension of the corporate vision in line with social cognitive theory and analyzes the relationship between corporate vision and corporate performance by combining qualitative comparative analysis (QCA) and necessary condition analysis (NCA) research methods. The article provides insights into the logic of constructing and adjusting corporate visions from a process perspective.

Findings

The mechanisms by which corporate visions can be articulated, accepted and transformed within the organization are also the means by which corporate visions can improve corporate performance. In a dynamic environment, the corporate vision setting and acceptance process integrates the requirements of various stakeholders, leading to the adjustment and acceptance of the corporate vision. As a result, the vision has continuous validity in a changing environment. Both start-ups and non-start-ups can benefit from the guidance provided by a strong corporate vision in overcoming a variety of issues and obstacles to produce strong business performance.

Originality/value

This is the first study that shows the relationship between corporate vision and corporate performance from a process perspective. The authors are interested in understanding which characteristics for building a corporate vision are more accepted by organizational members and, in turn, create high corporate performance. The authors also explore the conditions for corporate vision acceptance. This research has positive implications for shedding some light on the mechanisms by which corporate visions improve corporate performance.

Details

International Journal of Entrepreneurial Behavior & Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2554

Keywords

1 – 10 of over 1000