Search results

1 – 10 of 386
Open Access
Article
Publication date: 13 November 2023

Ming Gao, Anhui Pan, Yi Huang, Jiaqi Wang, Yan Zhang, Xiao Xie, Huanre Han and Yinghua Jia

The type 120 emergency valve is an essential braking component of railway freight trains, but corresponding diaphragms consisting of natural rubber (NR) and chloroprene rubber…

Abstract

Purpose

The type 120 emergency valve is an essential braking component of railway freight trains, but corresponding diaphragms consisting of natural rubber (NR) and chloroprene rubber (CR) exhibit insufficient aging resistance and low-temperature resistance, respectively. In order to develop type 120 emergency valve rubber diaphragms with long-life and high-performance, low-temperatureresistant CR and NR were processed.

Design/methodology/approach

The physical properties of the low-temperature-resistant CR and NR were tested by low-temperature stretching, dynamic mechanical analysis, differential scanning calorimetry and thermogravimetric analysis. Single-valve and single-vehicle tests of type 120 emergency valves were carried out for emergency diaphragms consisting of NR and CR.

Findings

The low-temperature-resistant CR and NR exhibited excellent physical properties. The elasticity and low-temperature resistance of NR were superior to those of CR, whereas the mechanical properties of the two rubbers were similar in the temperature range of 0 °C–150 °C. The NR and CR emergency diaphragms met the requirements of the single-valve test. In the low-temperature single-vehicle test, only the low-temperature sensitivity test of the NR emergency diaphragm met the requirements.

Originality/value

The innovation of this study is that it provides valuable data and experience for future development of type 120 valve rubber diaphragms.

Details

Railway Sciences, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 7 June 2023

Enoch Owusu-Sekyere, Helena Hansson, Evgenij Telezhenko, Ann-Kristin Nyman and Haseeb Ahmed

The purpose of this paper was to assess the economic impact of investment in different animal welfare–enhancing flooring solutions in Swedish dairy farming.

Abstract

Purpose

The purpose of this paper was to assess the economic impact of investment in different animal welfare–enhancing flooring solutions in Swedish dairy farming.

Design/methodology/approach

The authors developed a bio-economic model and used stochastic partial budgeting approach to simulate the economic consequences of enhancing solid and slatted concrete floors with soft rubber covering.

Findings

The findings highlight that keeping herds on solid and slatted concrete floor surfaces with soft rubber coverings is a profitable solution, compared with keeping herds on solid and slatted concrete floors without a soft covering. The profit per cow when kept on a solid concrete floor with soft rubber covering increased by 13%–16% depending on the breed.

Practical implications

Promoting farm investments such as improvement in flooring solution, which have both economic and animal welfare incentives, is a potential way of promoting sustainable dairy production. Farmers may make investments in improved floors, resulting in enhanced animal welfare and economic outcomes necessary for sustaining dairy production.

Originality/value

This literature review indicated that the economic impact of investment in specific types of floor improvement solutions, investment costs and financial outcomes have received little attention. This study provides insights needed for a more informed decision-making process when selecting optimal flooring solutions for new and renovated barns that improve both animal welfare and ease the burden on farmers and public financial support.

Details

British Food Journal, vol. 125 no. 12
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 16 October 2023

Monapriya Naidu Kerinasamy Naidu, Iling Aema Wonnie Ma, Sachin Sharma Ashok Kumar, Vengadaesvaran Balakrishnan, Ramesh Subramaniam and Ramesh Kasi

The purpose of this study is to develop a protective coating system on mild steel panel incorporating epoxidized natural rubber with acrylic polyol resin.

Abstract

Purpose

The purpose of this study is to develop a protective coating system on mild steel panel incorporating epoxidized natural rubber with acrylic polyol resin.

Design/methodology/approach

In this work, a novel attempt is made to develop binder coatings using epoxidized natural rubber-based material and an organic resin (acrylic resin) for corrosion protection on metal substrate. Seven different samples of multifunctional coatings are developed by varying the compositions of epoxidized natural rubber (ENR) and acrylic resin. The properties of the developed coatings have been characterized using analytical methods such as Fourier transform infrared spectroscopy (FTIR) and electrochemical impedance spectroscopy (EIS). EIS has been carried out for 30 days to evaluate the corrosion resistance after immersing into 3.5 wt.% of sodium chloride. Cross hatch cut tester (CHT) has been used to study the adhesive properties. UV–Visible Spectroscopy (UV–Vis) was also used to assess changes in the coating-film transparency of the natural rubber-based coating systems in this study.

Findings

The developed coatings have formed uniform layer on the substrate. CHT results show excellent adhesion of the coatings. Higher concentrations of ENR have higher transparency level, which reduces when the acrylic concentration increases. FTIR analysis confirms the crosslinking that occurred between the components of the coatings. Based on the impedance data from EIS, the incorporation of natural rubber can be an additive for the corrosion protection, which has the coating resistance values well above 108Ω even after 30 days of immersion.

Practical implications

The blending method provides a simple and practical solution to improve the strength and adhesion properties of acrylic polyol resin with epoxidized natural rubber. There is still improvement needed for long-term applications.

Originality/value

The work has been conducted in our laboratory. The combination of natural rubber-based materials and organic resins is a new approach in coating research.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 26 January 2024

Silvia Badini, Serena Graziosi, Michele Carboni, Stefano Regondi and Raffaele Pugliese

This study evaluates the potential of using the material extrusion (MEX) process for recycling waste tire rubber (WTR). By investigating the process parameters, mechanical…

Abstract

Purpose

This study evaluates the potential of using the material extrusion (MEX) process for recycling waste tire rubber (WTR). By investigating the process parameters, mechanical behaviour and morphological characterisation of a thermoplastic polyurethane-waste tire rubber composite filament (TPU-WTR), this study aims to establish a framework for end-of-life tire (ELT) recycling using the MEX technology.

Design/methodology/approach

The research assesses the impact of various process parameters on the mechanical properties of the TPU-WTR filament. Hysteresis analysis and Poisson’s ratio estimation are conducted to investigate the material’s behaviour. In addition, the compressive performance of diverse TPU-WTR triply periodic minimal surface lattices is explored to test the filament suitability for printing intricate structures.

Findings

Results demonstrate the potential of the TPU-WTR filament in developing sustainable structures. The MEX process can, therefore, contribute to the recycling of WTR. Mechanical testing has provided insights into the influence of process parameters on the material behaviour, while investigating various lattice structures has challenged the material’s capabilities in printing complex topologies.

Social implications

This research holds significant social implications addressing the growing environmental sustainability and waste management concerns. Developing 3D-printed sustainable structures using recycled materials reduces resource consumption and promotes responsible production practices for a more environmentally conscious society.

Originality/value

This study contributes to the field by showcasing the use of MEX technology for ELT recycling, particularly focusing on the TPU-WTR filament, presenting a novel approach to sustainable consumption and production aligned with the United Nations Sustainable Development Goal 12.

Article
Publication date: 11 October 2023

Bozong Jiao, Baofeng Pan and Naisheng Guo

The purpose of this article is to determine the parameters of the preparation process for devulcanized and pyrolytic crumb rubber modified asphalt (DCRMA) and then study the…

Abstract

Purpose

The purpose of this article is to determine the parameters of the preparation process for devulcanized and pyrolytic crumb rubber modified asphalt (DCRMA) and then study the rheological and microscopic properties of DCRMA through experiments.

Design/methodology/approach

In this study, a new preparation process for DCRMA was developed, then the penetration, softening point and viscosity tests were employed to determine the parameters of the preparation process. The crumb rubber (CR) solubility, Fluorescence microscopy (FM), Fourier Transform Infrared (FTIR) spectroscopy and thermogravimetric analysis tests were conducted to verify the devulcanized and pyrolytic effectiveness of the preparation process. Furthermore, dynamic shear rheometer and bending beam rheometer were used to characterize the high and low-temperature rheological properties of DCRMA.

Findings

The results showed that the penetration balanced the CR degradation and the virgin asphalt aging well and thus could be used as a main parameters control indicator. The CR solubility, FM and FTIR tests proved that the CR has been fully devulcanized and pyrolytic via the preparation process. The DCRMA exhibited better low-temperature and fatigue performance and lower rutting performance than the conventional crumb rubber modified asphalt (CRMA) with the same CR content. Finally, the time–temperature superposition principle could be employed for all binders in this study.

Originality/value

A new preparation process for DCRMA was developed.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 16 April 2024

Amina Dinari, Tarek Benameur and Fuad Khoshnaw

The research aims to investigate the impact of thermo-mechanical aging on SBR under cyclic-loading. By conducting experimental analyses and developing a 3D finite element analysis…

Abstract

Purpose

The research aims to investigate the impact of thermo-mechanical aging on SBR under cyclic-loading. By conducting experimental analyses and developing a 3D finite element analysis (FEA) model, it seeks to understand chemical and physical changes during aging processes. This research provides insights into nonlinear mechanical behavior, stress softening and microstructural alterations in SBR compounds, improving material performance and guiding future strategies.

Design/methodology/approach

This study combines experimental analyses, including cyclic tensile loading, attenuated total reflection (ATR), spectroscopy and energy-dispersive X-ray spectroscopy (EDS) line scans, to investigate the effects of thermo-mechanical aging (TMA) on carbon-black (CB) reinforced styrene-butadiene rubber (SBR). It employs a 3D FEA model using the Abaqus/Implicit code to comprehend the nonlinear behavior and stress softening response, offering a holistic understanding of aging processes and mechanical behavior under cyclic-loading.

Findings

This study reveals significant insights into SBR behavior during thermo-mechanical aging. Findings include surface roughness variations, chemical alterations and microstructural changes. Notably, a partial recovery of stiffness was observed as a function of CB volume fraction. The developed 3D FEA model accurately depicts nonlinear behavior, stress softening and strain fields around CB particles in unstressed states, predicting hysteresis and energy dissipation in aged SBRs.

Originality/value

This research offers novel insights by comprehensively investigating the impact of thermo-mechanical aging on CB-reinforced-SBR. The fusion of experimental techniques with FEA simulations reveals time-dependent mechanical behavior and microstructural changes in SBR materials. The model serves as a valuable tool for predicting material responses under various conditions, advancing the design and engineering of SBR-based products across industries.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 6 February 2024

Jing Song

This study aims to examine why women transition from wage work to self-employed entrepreneurship, the seemingly insecure and unruly economic sector compared with the stable iron…

Abstract

Purpose

This study aims to examine why women transition from wage work to self-employed entrepreneurship, the seemingly insecure and unruly economic sector compared with the stable iron rice bowl and the fancy spring rice jobs.

Design/methodology/approach

Based on in-depth interviews in Zhejiang, the entrepreneurial hotbed in coastal China, this study examines the experiences of self-employed female entrepreneurs who used to work in the iron rice bowl and the spring rice jobs and explores their nonconventional career transition and its gendered implications.

Findings

This study finds that these women quit their previous jobs to escape from gendered suppression in wage work where their femininity was stereotyped, devalued or disciplined. By working for themselves, these women embrace a rubber rice bowl that allows them to improvise different forms of femininity that are better rewarded and recognized.

Originality/value

The study contributes to studies on gender and work by framing femininity as a fluid rather than a fixed set of qualities and fills the research gap by illustrating women’s agency in reacting to gender expectations in certain workplaces. The study develops a new concept of rubber rice bowl to describe how entrepreneurship, a seemingly women-unfriendly sphere, attracts women by allowing them to comply with, resist, or improvise normative gender expectations.

Details

Gender in Management: An International Journal , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1754-2413

Keywords

Case study
Publication date: 7 December 2023

Chitra Singla and Bulbul Singh

Madan Mohanka set up Tega Industries Ltd in 1976 to manufacture abrasion-resistant rubber mill lining products used in the mining and mineral processing industries. In 2006, as…

Abstract

Madan Mohanka set up Tega Industries Ltd in 1976 to manufacture abrasion-resistant rubber mill lining products used in the mining and mineral processing industries. In 2006, as part of its inorganic expansion strategy, Tega bought a mill-liner company in South Africa. Buoyed by this growth, two acquisitions were made in Australia and Chile in the year 2011. However, post-acquisition, several managerial, legal and commercial problems crept up in its manufacturing facilities in Chile, leading to financial downturn in Tega's fortunes in 2016 and compelling it to either plan a revival or divest its interest in its Chilean Plant.

Details

Indian Institute of Management Ahmedabad, vol. no.
Type: Case Study
ISSN: 2633-3260
Published by: Indian Institute of Management Ahmedabad

Keywords

Article
Publication date: 29 January 2024

Chang Chen, Yuandong Liang, Jiten Sun, Chen Lin and Yehao Wen

The purpose of this paper is to introduce a variable distance pneumatic gripper with embedded flexible sensors, which can effectively grasp fragile and flexible objects.

Abstract

Purpose

The purpose of this paper is to introduce a variable distance pneumatic gripper with embedded flexible sensors, which can effectively grasp fragile and flexible objects.

Design/methodology/approach

Based on the motion principle of the three-jaw chuck and the pneumatic “fast pneumatic network” (FPN), a variable distance pneumatic holder embedded with a flexible sensor is designed. A structural design plan and preparation process of a soft driver is proposed, using carbon nanotubes as filler in a polyurethane (PU) sponge. A flexible bending sensor based on carbon nanotube materials was produced. A static model of the soft driver cavity was established, and a bending simulation was performed. Based on the designed variable distance soft pneumatic gripper, a real-time monitoring and control system was developed. Combined with the developed pneumatic control system, gripping experiments on objects of different shapes and easily deformable and fragile objects were conducted.

Findings

In this paper, a variable-distance pneumatic gripper embedded with a flexible sensor was designed, and a control system for real-time monitoring and multi-terminal input was developed. Combined with the developed pneumatic control system, a measure was carried out to measure the relationship between the bending angle, output force and air pressure of the soft driver. Flexible bending sensor performance test. The gripper diameter and gripping weight were tested, and the maximum gripping diameter was determined to be 182 mm, the maximum gripping weight was approximately 900 g and the average measurement error of the bending sensor was 5.91%. Objects of different shapes and easily deformable and fragile objects were tested.

Originality/value

Based on the motion principle of the three-jaw chuck and the pneumatic FPN, a variable distance pneumatic gripper with embedded flexible sensors is proposed by using the method of layered and step-by-step preparation. The authors studied the gripper structure design, simulation analysis, prototype preparation, control system construction and experimental testing. The results show that the designed flexible pneumatic gripper with variable distance can grasp common objects.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Case study
Publication date: 8 January 2024

Aasha Jayant Sharma

Upon completion of the case study, the students will be able to apply business upscaling strategies to an upcycling social enterprise that is embracing a circular economy approach…

Abstract

Learning outcomes

Upon completion of the case study, the students will be able to apply business upscaling strategies to an upcycling social enterprise that is embracing a circular economy approach by using the Ansoff growth matrix; to analyze strategies for transition to circularity using the butterfly diagram tool for both business and personal use; to indulge in upcycling exercises for a used product of their choice, not only unleashing their creative potential but also contributing to an idea that might get them to win a contest; to analyze different operational problems and efficiency opportunities that arise when a company takes on social and environmental causes as a business opportunity; and to strategize how a social enterprise can be sustained and made for-profit by applying business strategies.

Case overview/synopsis

This case study covers the concepts of upcycling under the gamut of circular economy, a concept that has become more of a strategy to sustain and survive in today’s world. This case is about Rimagined, an upcycling company that could be a model for circular ideas and upcycling of stuff. This case study narrates the growth and the challenges faced in upcycling and encourages students to ideate a new design for any upcycling item of their choice. This case will also make students strategize the expansion plan for Rimagined. Shailaja Rangarajan is the protagonist of this case study who started this social enterprise to make a difference and do her bit. Sustaining a social enterprise requires business acumen and risk-bearing capacities like any other business. Rangarajan was facing the dilemma of expansion and was trying out several feasible options. Rimagined had been unable to attract investors because their expectations of quick returns could not be immediately fulfilled. Investors focused more on waste management as an industry and not on upcycling as a separate area of work.

Complexity academic level

This case study is suitable for students of MBA or executive MBA level. Specifically, this case study can be used in business strategies and circular economy courses.

Supplementary materials

Teaching notes are available for educators only.

Subject code

CSS 4: Environmental management.

Details

Emerald Emerging Markets Case Studies, vol. 14 no. 1
Type: Case Study
ISSN: 2045-0621

Keywords

1 – 10 of 386