Search results

1 – 10 of 19
Article
Publication date: 5 December 2023

Zhirui Zhao, Lina Hao, Guanghong Tao, Hongjun Liu and Lihua Shen

This study discusses the tracking trajectory issue of the exoskeleton under the bounded disturbance and designs an useful tracking trajectory control method to solve it. By using…

124

Abstract

Purpose

This study discusses the tracking trajectory issue of the exoskeleton under the bounded disturbance and designs an useful tracking trajectory control method to solve it. By using the proposed control method, the tracking error can be successfully convergence to the assigned boundary. Meanwhile, the chattering effect caused by the actuators is already reduced, and the tracking performance of the pneumatic artificial muscles (PAMs) elbow exoskeleton is improved effectively.

Design/methodology/approach

A prescribed performance sliding mode control method was developed in this study to fulfill the joint position tracking trajectory task on the elbow exoskeleton driven by two PAMs. In terms of the control structure, a dynamic model was built by conforming to the adaptive law to compensate for the time variety and uncertainty exhibited by the system. Subsequently, a super-twisting algorithm-based second-order sliding mode control method was subjected to the exoskeleton under the boundedness of external disturbance. Moreover, the prescribed performance control method exhibits a smooth prescribed function with an error transformation function to ensure the tracking error can be finally convergent to the pre-designed requirement.

Findings

From the theoretical perspective, the stability of the control method was verified through Lyapunov synthesis. On that basis, the tracking performance of the proposed control method was confirmed through the simulation and the manikin model experiment.

Originality/value

As revealed by the results of this study, the proposed control method sufficiently applies to the PAMs elbow exoskeleton for tracking trajectory, which means it has potential application in the actual robot-assisted passive rehabilitation tasks.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 13 November 2023

Ming Gao, Anhui Pan, Yi Huang, Jiaqi Wang, Yan Zhang, Xiao Xie, Huanre Han and Yinghua Jia

The type 120 emergency valve is an essential braking component of railway freight trains, but corresponding diaphragms consisting of natural rubber (NR) and chloroprene rubber…

Abstract

Purpose

The type 120 emergency valve is an essential braking component of railway freight trains, but corresponding diaphragms consisting of natural rubber (NR) and chloroprene rubber (CR) exhibit insufficient aging resistance and low-temperature resistance, respectively. In order to develop type 120 emergency valve rubber diaphragms with long-life and high-performance, low-temperatureresistant CR and NR were processed.

Design/methodology/approach

The physical properties of the low-temperature-resistant CR and NR were tested by low-temperature stretching, dynamic mechanical analysis, differential scanning calorimetry and thermogravimetric analysis. Single-valve and single-vehicle tests of type 120 emergency valves were carried out for emergency diaphragms consisting of NR and CR.

Findings

The low-temperature-resistant CR and NR exhibited excellent physical properties. The elasticity and low-temperature resistance of NR were superior to those of CR, whereas the mechanical properties of the two rubbers were similar in the temperature range of 0 °C–150 °C. The NR and CR emergency diaphragms met the requirements of the single-valve test. In the low-temperature single-vehicle test, only the low-temperature sensitivity test of the NR emergency diaphragm met the requirements.

Originality/value

The innovation of this study is that it provides valuable data and experience for future development of type 120 valve rubber diaphragms.

Details

Railway Sciences, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 29 January 2024

Chang Chen, Yuandong Liang, Jiten Sun, Chen Lin and Yehao Wen

The purpose of this paper is to introduce a variable distance pneumatic gripper with embedded flexible sensors, which can effectively grasp fragile and flexible objects.

Abstract

Purpose

The purpose of this paper is to introduce a variable distance pneumatic gripper with embedded flexible sensors, which can effectively grasp fragile and flexible objects.

Design/methodology/approach

Based on the motion principle of the three-jaw chuck and the pneumatic “fast pneumatic network” (FPN), a variable distance pneumatic holder embedded with a flexible sensor is designed. A structural design plan and preparation process of a soft driver is proposed, using carbon nanotubes as filler in a polyurethane (PU) sponge. A flexible bending sensor based on carbon nanotube materials was produced. A static model of the soft driver cavity was established, and a bending simulation was performed. Based on the designed variable distance soft pneumatic gripper, a real-time monitoring and control system was developed. Combined with the developed pneumatic control system, gripping experiments on objects of different shapes and easily deformable and fragile objects were conducted.

Findings

In this paper, a variable-distance pneumatic gripper embedded with a flexible sensor was designed, and a control system for real-time monitoring and multi-terminal input was developed. Combined with the developed pneumatic control system, a measure was carried out to measure the relationship between the bending angle, output force and air pressure of the soft driver. Flexible bending sensor performance test. The gripper diameter and gripping weight were tested, and the maximum gripping diameter was determined to be 182 mm, the maximum gripping weight was approximately 900 g and the average measurement error of the bending sensor was 5.91%. Objects of different shapes and easily deformable and fragile objects were tested.

Originality/value

Based on the motion principle of the three-jaw chuck and the pneumatic FPN, a variable distance pneumatic gripper with embedded flexible sensors is proposed by using the method of layered and step-by-step preparation. The authors studied the gripper structure design, simulation analysis, prototype preparation, control system construction and experimental testing. The results show that the designed flexible pneumatic gripper with variable distance can grasp common objects.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 April 2024

Chenyu Zhang, Hongtao Xu and Yaodong Da

Thermal protection of a flange is critical for preventing tower icing and collapse of wind turbines (WTs) in extremely cold weather. This study aims to develop a novel thermal…

22

Abstract

Purpose

Thermal protection of a flange is critical for preventing tower icing and collapse of wind turbines (WTs) in extremely cold weather. This study aims to develop a novel thermal protection system for the WTs flanges using an electrical heat-tracing element.

Design/methodology/approach

A three-dimensional model and the Poly-Hexacore mesh structure are used, and the fluid-solid coupling method was validated and then deployed to analyze the heat transfer and convection process. Intra-volumetric heat sources are applied to represent the heat generated by the heating element, and the dynamic boundary conditions are considered. The steady temperature and temperature uniformity of the flange are the assessment criteria for the thermal protection performance of the heating element.

Findings

Enlarging the heating area and increasing the heating power improved the flange's temperature and temperature uniformity. A heating power of 4.9 kW was suitable for engineering applications with the lowest temperature nonuniformity. Compared with continuous heating, the increased temperature nonuniformity was buffered, and the electrical power consumption was reduced by half using pulse heating. Pulse heating time intervals of 1, 3 and 4 h were determined for the spring, autumn and winter, respectively.

Originality/value

The originality of this study is to propose a novel electrical heat-tracing thermal protection system for the WTs flanges. The effect of different arrangements, heating powers and heating strategies was studied, by which the theoretical basis is provided for a stable and long-term utilization of the WT flange.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 December 2023

Shahe Liang, Zhiqiang Zhang and Aiqun Li

A new type of variable damping viscous damper is developed to meet the settings of different damping parameter values at different working stages. Its main principle and design…

Abstract

Purpose

A new type of variable damping viscous damper is developed to meet the settings of different damping parameter values at different working stages. Its main principle and design structure are introduced, and the two-stage and multi-stage controllable damping methods are proposed.

Design/methodology/approach

The theoretical calculation formulas of the damping force of power-law fluid variable damping viscous damper at elongated holes are derived, aiming to provide a theoretical basis for the development and application of variable damping viscous dampers. For the newly developed variable damping viscous damper, the dynamic equations for the seismic reduction system with variable damping viscous dampers under a multi-degree-of-freedom system are established. A feasible calculation and analysis method is proposed to derive the solution process of time history analysis. At the same time, a program is also developed using Matlab. The dynamic full-scale test of a two-stage variable damping viscous damper was conducted, demonstrating that the hysteresis curve is complete and the working condition is stable.

Findings

Through the calculation and analysis of examples, the results show that the seismic reduction effect of high and flexible buildings using the seismic reduction system with variable damping viscous dampers is significant. The program developed is used to analyze the seismic response of a broadcasting tower using a variable damping TMD system under large earthquakes. The results indicate that the installation of variable damping viscous dampers can effectively control the maximum inter-story displacement response of TMD water tanks and can effectively consume seismic energy.

Originality/value

This method can provide a guarantee for the safe and effective operation of TMD in wind and vibration control.

Details

International Journal of Structural Integrity, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 December 2022

Naveenkumar R., Shanmugam S. and Veerappan AR

The purpose of this paper is to understand the effect of basin water depth towards the cumulative distillate yield of the traditional and developed single basin double slope solar…

Abstract

Purpose

The purpose of this paper is to understand the effect of basin water depth towards the cumulative distillate yield of the traditional and developed single basin double slope solar still (DSSS).

Design/methodology/approach

Modified single basin DSSS integrated with solar operated vacuum fan and external water cooled condenser was fabricated using aluminium material. During sunny season, experimental investigations have been performed in both conventional and modified DSSS at a basin water depth of 3, 6, 9 and 12 cm. Production rate and cumulative distillate yield obtained in traditional and developed DSSS at different water depths were compared and best water depth to attain the maximum productivity and cumulative distillate yield was found out.

Findings

Results indicated that both traditional and modified double SS produced maximum yield at the minimum water depth of 3 cm. Cumulative distillate yield of the developed SS was 16.39%, 18.86%, 15.22% and 17.07% higher than traditional at water depths of 3, 6, 9 and 12 cm, respectively. Cumulative distillate yield of the developed SS at 3 cm water depth was 73.17% higher than that of the traditional SS at 12 cm depth.

Originality/value

Performance evaluation of DSSS at various water depths by integrating the combined solar operated Vacuum fan and external Condenser.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 15 August 2022

Wanting Zhao and Lijun Chen

Self-crosslinked long fluorocarbon acrylate polymer latex has good hydrophobic and oleophobicity, weather resistance, aging resistance, stability and other excellent properties…

Abstract

Purpose

Self-crosslinked long fluorocarbon acrylate polymer latex has good hydrophobic and oleophobicity, weather resistance, aging resistance, stability and other excellent properties, which make the polymer be widely used in coatings, dyes, adhesives and other products. The purpose of this study is to prepare self-crosslinked long fluorocarbon acrylate polymer latex via semi-continuous seeded emulsion technology and carry out comparative study on two different cross-linked monomers.

Design/methodology/approach

Methyl methacrylate (MMA) and butyl acrylate (BA) were used as the main monomers, dodecafluoroheptyl methacrylate (DFMA) as the fluoromonomer, hydroxypropyl methacrylate (HPMA) and N-methylol acrylamide (NMA) as cross-linked monomers, and 1-allyloxy-3–(4-nonylphenol)-2-propanol polyoxyethylene (10) ether (ANPEO10) and 1-allyloxy-3–(4-nonylphenol)-2-propanol polyoxyethylene (10) ether ammonium sulfate (DNS-86) as compound emulsifiers via the semicontinuous-seeded emulsion polymerization.

Findings

The properties of the polymer emulsions, which are prepared with two different cross-linked monomers, are compared and discussed, and it is concluded that HPMA is more suitable for the preparation of self-crosslinked polymer emulsions. The formula of the polymer latex is ANPEO10: DNS-86 = 1:1, and the mass ratio of the monomers used in the polymer is MMA: BA: DFMA: HPMA = 14.40:14.40:0.60:0.60.

Practical implications

Self-crosslinked long fluorocarbon acrylate polymer latex can be used in many fields such as coatings, dyes, adhesives and other products.

Originality/value

The self-crosslinked long fluorocarbon acrylate polymer latex is prepared by mixing the nonionic emulsifier ANPEO10 and the anionic emulsifier DNS-86 when potassium persulfate is used as the thermal decomposition initiator and the semicontinuous-seeded emulsion technology is adopted and the comparative study on two different cross-linked monomer is carried out, which is not reported in the open literatures.

Article
Publication date: 24 November 2023

Yuling Ran, Wei Bai, Lingwei Kong, Henghui Fan, Xiujuan Yang and Xuemei Li

The purpose of this paper is to develop an appropriate machine learning model for predicting soil compaction degree while also examining the contribution rates of three…

Abstract

Purpose

The purpose of this paper is to develop an appropriate machine learning model for predicting soil compaction degree while also examining the contribution rates of three influential factors: moisture content, electrical conductivity and temperature, towards the prediction of soil compaction degree.

Design/methodology/approach

Taking fine-grained soil A and B as the research object, this paper utilized the laboratory test data, including compaction parameter (moisture content), electrical parameter (electrical conductivity) and temperature, to predict soil degree of compaction based on five types of commonly used machine learning models (19 models in total). According to the prediction results, these models were preliminarily compared and further evaluated.

Findings

The Gaussian process regression model has a good effect on the prediction of degree of compaction of the two kinds of soils: the error rates of the prediction of degree of compaction for fine-grained soil A and B are within 6 and 8%, respectively. As per the order, the contribution rates manifest as: moisture content > electrical conductivity >> temperature.

Originality/value

By using moisture content, electrical conductivity, temperature to predict the compaction degree directly, the predicted value of the compaction degree can be obtained with higher accuracy and the detection efficiency of the compaction degree can be improved.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 2024

Jun Cheng and Chunxing Gu

As the crucial support component of the propeller power system, the reliability of the operation of submersible pumps is influenced by the lubrication performance of…

Abstract

Purpose

As the crucial support component of the propeller power system, the reliability of the operation of submersible pumps is influenced by the lubrication performance of water-lubricated thrust bearings. When the water-lubricated thrust bearings are under start-stop or heavy load conditions, the effect of surface morphology is crucial as the mixed lubrication regime is encountered. This paper aims to develop one mixed lubrication model for the water-lubricated thrust bearings to predict the effects of surface skewness, kurtosis and roughness orientation on the loading carrying capacity and tribological behavior.

Design/methodology/approach

This paper developed one improved mixed lubrication model specifically for the water-lubricated thrust bearing system. In this model, the hydrodynamic model was improved by using the height of the rough surface and its probability density function, combined with the average flow model. The asperity contact model was improved by using the equation for the Pearson system of frequency curves to characterize the non-Gaussian aspect of surface roughness distribution.

Findings

According to the results, negative skewness, large kurtosis and lateral surface pattern can improve the tribological performance of water-lubricated thrust bearings. Optimizing the surface morphology is a reasonable design method that can improve the performance of water-lubricated thrust bearings.

Originality/value

In this paper, one mixed lubrication model specifically for the water-lubricated thrust bearing with the effect of surface roughness into consideration was developed. Based on the developed model, the effect of surface morphology on tribological behavior can be evaluated.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2023-0247/

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 November 2022

Rajat Yadav, Anas Islam and Vijay Kumar Dwivedi

The purpose of this paper is to study Al-based green composite. To make composite samples of aluminium alloy (AA3105) with different weight percentages of rice husk ash (RHA) and…

62

Abstract

Purpose

The purpose of this paper is to study Al-based green composite. To make composite samples of aluminium alloy (AA3105) with different weight percentages of rice husk ash (RHA) and eggshell (ES) particles as reinforcement, stir casting method was used.

Design/methodology/approach

Several other aspects, including the weight percent of reinforcing agent particles, the applied stress and the sliding speed, were taken into consideration. During the course of the wear test, the sliding distance that was recorded varied from a minimum of 1,000 m all the way up to a maximum of 3,135 m (10, 15, 20, 25 and 30 min). The typical range for normal loads is 8–24 N, and their speed is 1.58 m/s.

Findings

With the AA/ES/RHA composite, the wear rates decreases when the grain size of the reinforcing particles enhanced. Scanning electron microscopy images of worn surfaces show that at low speeds, delaminating and ploughing are the main causes of wear. At high speeds, ploughing is major cause of wear. Composites with better wear-resistant properties can be used in wide range of tribological applications, especially in the automotive industry. It was found that hardness increases at the same time as the weight of the reinforcement increases. Tensile and hardness were maximized at 10% reinforcement mix in Al3105.

Originality/value

In this work, ES and RHA has been used to develop green metal matrix composite to support green revolution as promoted/suggested by United Nations thus reducing the environmental pollution.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 19