Search results

1 – 10 of 499
Open Access
Article
Publication date: 4 August 2020

Aaqil Somauroo and Vandana Bassoo

Due to its boundless potential applications, Wireless Sensor Networks have been subject to much research in the last two decades. WSNs are often deployed in remote environments…

1232

Abstract

Due to its boundless potential applications, Wireless Sensor Networks have been subject to much research in the last two decades. WSNs are often deployed in remote environments making replacement of batteries not feasible. Low energy consumption being of prime requisite led to the development of energy-efficient routing protocols. The proposed routing algorithms seek to prolong the lifetime of sensor nodes in the relatively unexplored area of 3D WSNs. The schemes use chain-based routing technique PEGASIS as basis and employ genetic algorithm to build the chain instead of the greedy algorithm. Proposed schemes will incorporate an energy and distance aware CH selection technique to improve load balancing. Clustering of the network is also implemented to reduce number of nodes in a chain and hence reduce delay. Simulation of our proposed protocols is carried out for homogeneous networks considering separately cases for a static base-station inside and outside the network. Results indicate considerable improvement in lifetime over PEGASIS of 817% and 420% for base station inside and outside the network respectively. Residual energy and delay performance are also considered.

Details

Applied Computing and Informatics, vol. 19 no. 3/4
Type: Research Article
ISSN: 2634-1964

Content available
Book part
Publication date: 2 July 2020

Kathleen M. Moriarty

Abstract

Details

Transforming Information Security
Type: Book
ISBN: 978-1-83909-928-1

Open Access
Article
Publication date: 26 October 2020

Mohammed S. Al-kahtani, Lutful Karim and Nargis Khan

Designing an efficient routing protocol that opportunistically forwards data to the destination node through nearby sensor nodes or devices is significantly important for an…

Abstract

Designing an efficient routing protocol that opportunistically forwards data to the destination node through nearby sensor nodes or devices is significantly important for an effective incidence response and disaster recovery framework. Existing sensor routing protocols are mostly not effective in such disaster recovery applications as the networks are affected (destroyed or overused) in disasters such as earthquake, flood, Tsunami and wildfire. These protocols require a large number of message transmissions to reestablish the clusters and communications that is not energy efficient and result in packet loss. This paper introduces ODCR - an energy efficient and reliable opportunistic density clustered-based routing protocol for such emergency sensor applications. We perform simulation to measure the performance of ODCR protocol in terms of network energy consumptions, throughput and packet loss ratio. Simulation results demonstrate that the ODCR protocol is much better than the existing TEEN, LEACH and LORA protocols in term of these performance metrics.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 15 March 2018

Moufida Maimour

Multipath routing holds a great potential to provide sufficient bandwidth to a plethora of applications in wireless sensor networks. In this paper, we consider the problem of…

313

Abstract

Multipath routing holds a great potential to provide sufficient bandwidth to a plethora of applications in wireless sensor networks. In this paper, we consider the problem of interference that can significantly affect the expected performances. We focus on the performance evaluation of the iterative paths discovery approach as opposed to the traditional concurrent multipath routing. Five different variants of multipath protocols are simulated and evaluated using different performance metrics. We mainly show that the iterative approach allows better performances when used jointly with an interference-aware metric or when an interference-zone marking strategy is employed. This latter appears to exhibit the best performances in terms of success ratio, achieved throughput, control messages overhead as well as energy consumption.

Details

Applied Computing and Informatics, vol. 16 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 22 April 2022

Kamalakshi Dayal and Vandana Bassoo

The performance of Wireless Sensor Networks (WSNs) applications is bounded by the limited resources of battery-enabled Sensor Nodes (SNs), which include energy and computational…

Abstract

Purpose

The performance of Wireless Sensor Networks (WSNs) applications is bounded by the limited resources of battery-enabled Sensor Nodes (SNs), which include energy and computational power; the combination of which existing research seldom focuses on. Although bio-inspired algorithms provide a way to control energy usage by finding optimal routing paths, those which converge slower require even more computational power, which altogether degrades the overall lifetime of SNs.

Design/methodology/approach

Hence, two novel routing protocols are proposed using the Red-Deer Algorithm (RDA) in a WSN scenario, namely Horizontal PEG-RDA Equal Clustering and Horizontal PEG-RDA Unequal Clustering, to address the limited computational power of SNs. Clustering, data aggregation and multi-hop transmission are also integrated to improve energy usage. Unequal clustering is applied in the second protocol to mitigate the hotspot problem in Horizontal PEG-RDA Equal Clustering.

Findings

Comparisons with the well-founded Ant Colony Optimisation (ACO) algorithm reveal that RDA converges faster by 85 and 80% on average when the network size and node density are varied, respectively. Furthermore, 33% fewer packets are lost using the unequal clustering approach which also makes the network resilient to node failures. Improvements in terms of residual energy and overall network lifetime are also observed.

Originality/value

Proposal of a bio-inspired algorithm, namely the RDA to find optimal routing paths in WSN and to enhance convergence rate and execution time against the well-established ACO algorithm. Creation of a novel chain cluster-based routing protocol using RDA, named Horizontal PEG-RDA Equal Clustering. Design of an unequal clustering equivalent of the proposed Horizontal PEG-RDA Equal Clustering protocol to tackle the hotspot problem, which enhances residual energy and overall network lifetime, as well as minimises packet loss.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 7 March 2018

Natasha Ramluckun and Vandana Bassoo

With the increasing acclaim of Wireless Sensor Networks and its diverse applications, research has been directed into optimising and prolonging the network lifetime. Energy…

Abstract

With the increasing acclaim of Wireless Sensor Networks and its diverse applications, research has been directed into optimising and prolonging the network lifetime. Energy efficiency has been a critical factor due to the energy resource impediment of batteries in sensor nodes. The proposed routing algorithm therefore aims at extending lifetime of sensors by enhancing load distribution in the network. The scheme is based on the chain-based routing technique of the PEGASIS (Power Energy GAthering in Sensor Information Systems) protocol and uses Ant Colony Optimisation to obtain the optimal chain. The contribution of the proposed work is the integration of the clustering method to PEGASIS with Ant Colony Optimisation to reduce redundancy of data, neighbour nodes distance and transmission delay associated with long links, and the employment an appropriate cluster head selection method. Simulation results indicates proposed method’s superiority in terms of residual energy along with considerable improvement regarding network lifetime, and significant reduction in delay when compared with existing PEGASIS protocol and optimised PEG-ACO chain respectively.

Details

Applied Computing and Informatics, vol. 16 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 4 December 2018

Daxin Tian, Weiqiang Gong, Wenhao Liu, Xuting Duan, Yukai Zhu, Chao Liu and Xin Li

This paper aims to introduce vehicular network platform, routing and broadcasting methods and vehicular positioning enhancement technology, which are three aspects of the…

1705

Abstract

Purpose

This paper aims to introduce vehicular network platform, routing and broadcasting methods and vehicular positioning enhancement technology, which are three aspects of the applications of intelligent computing in vehicular networks. From this paper, the role of intelligent algorithm in the field of transportation and the vehicular networks can be understood.

Design/methodology/approach

In this paper, the authors introduce three different methods in three layers of vehicle networking, which are data cleaning based on machine learning, routing algorithm based on epidemic model and cooperative localization algorithm based on the connect vehicles.

Findings

In Section 2, a novel classification-based framework is proposed to efficiently assess the data quality and screen out the abnormal vehicles in database. In Section 3, the authors can find when traffic conditions varied from free flow to congestion, the number of message copies increased dramatically and the reachability also improved. The error of vehicle positioning is reduced by 35.39% based on the CV-IMM-EKF in Section 4. Finally, it can be concluded that the intelligent computing in the vehicle network system is effective, and it will improve the development of the car networking system.

Originality/value

This paper reviews the research of intelligent algorithms in three related areas of vehicle networking. In the field of vehicle networking, these research results are conducive to promoting data processing and algorithm optimization, and it may lay the foundation for the new methods.

Details

Journal of Intelligent and Connected Vehicles, vol. 1 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Content available
1047

Abstract

Details

International Journal of Pervasive Computing and Communications, vol. 4 no. 1
Type: Research Article
ISSN: 1742-7371

Open Access
Article
Publication date: 30 April 2021

Mohamed Abbas and Nasser Otayf

The purpose of this paper is to minimize energy usage by maximizing network life in the creation of applications and protocols

1559

Abstract

Purpose

The purpose of this paper is to minimize energy usage by maximizing network life in the creation of applications and protocols

Design/methodology/approach

This paper presents a novel methodology for optimum energy consumption in wireless sensor networks. The proposed methodology introduces some protocols and logarithms that effectively contributed to reducing energy consumption in these types of networks.

Findings

The results of that comparison showed the ability of those logarithms and protocols to reduce that energy but in varying proportions. It can be concluded that a significant reduction in energy consumption approximately 50% could be obtained by the proposed methodology.

Originality/value

Here, a novel methodology for optimum energy consumption in wireless sensor networks has been introduced.

Details

Frontiers in Engineering and Built Environment, vol. 1 no. 1
Type: Research Article
ISSN: 2634-2499

Keywords

Content available
Article
Publication date: 18 September 2007

308

Abstract

Details

Sensor Review, vol. 27 no. 4
Type: Research Article
ISSN: 0260-2288

1 – 10 of 499