Search results

1 – 10 of 338
Open Access
Article
Publication date: 4 August 2020

Aaqil Somauroo and Vandana Bassoo

Due to its boundless potential applications, Wireless Sensor Networks have been subject to much research in the last two decades. WSNs are often deployed in remote environments…

1235

Abstract

Due to its boundless potential applications, Wireless Sensor Networks have been subject to much research in the last two decades. WSNs are often deployed in remote environments making replacement of batteries not feasible. Low energy consumption being of prime requisite led to the development of energy-efficient routing protocols. The proposed routing algorithms seek to prolong the lifetime of sensor nodes in the relatively unexplored area of 3D WSNs. The schemes use chain-based routing technique PEGASIS as basis and employ genetic algorithm to build the chain instead of the greedy algorithm. Proposed schemes will incorporate an energy and distance aware CH selection technique to improve load balancing. Clustering of the network is also implemented to reduce number of nodes in a chain and hence reduce delay. Simulation of our proposed protocols is carried out for homogeneous networks considering separately cases for a static base-station inside and outside the network. Results indicate considerable improvement in lifetime over PEGASIS of 817% and 420% for base station inside and outside the network respectively. Residual energy and delay performance are also considered.

Details

Applied Computing and Informatics, vol. 19 no. 3/4
Type: Research Article
ISSN: 2634-1964

Open Access
Article
Publication date: 26 October 2020

Mohammed S. Al-kahtani, Lutful Karim and Nargis Khan

Designing an efficient routing protocol that opportunistically forwards data to the destination node through nearby sensor nodes or devices is significantly important for an…

Abstract

Designing an efficient routing protocol that opportunistically forwards data to the destination node through nearby sensor nodes or devices is significantly important for an effective incidence response and disaster recovery framework. Existing sensor routing protocols are mostly not effective in such disaster recovery applications as the networks are affected (destroyed or overused) in disasters such as earthquake, flood, Tsunami and wildfire. These protocols require a large number of message transmissions to reestablish the clusters and communications that is not energy efficient and result in packet loss. This paper introduces ODCR - an energy efficient and reliable opportunistic density clustered-based routing protocol for such emergency sensor applications. We perform simulation to measure the performance of ODCR protocol in terms of network energy consumptions, throughput and packet loss ratio. Simulation results demonstrate that the ODCR protocol is much better than the existing TEEN, LEACH and LORA protocols in term of these performance metrics.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 15 March 2018

Moufida Maimour

Multipath routing holds a great potential to provide sufficient bandwidth to a plethora of applications in wireless sensor networks. In this paper, we consider the problem of…

313

Abstract

Multipath routing holds a great potential to provide sufficient bandwidth to a plethora of applications in wireless sensor networks. In this paper, we consider the problem of interference that can significantly affect the expected performances. We focus on the performance evaluation of the iterative paths discovery approach as opposed to the traditional concurrent multipath routing. Five different variants of multipath protocols are simulated and evaluated using different performance metrics. We mainly show that the iterative approach allows better performances when used jointly with an interference-aware metric or when an interference-zone marking strategy is employed. This latter appears to exhibit the best performances in terms of success ratio, achieved throughput, control messages overhead as well as energy consumption.

Details

Applied Computing and Informatics, vol. 16 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 22 April 2022

Kamalakshi Dayal and Vandana Bassoo

The performance of Wireless Sensor Networks (WSNs) applications is bounded by the limited resources of battery-enabled Sensor Nodes (SNs), which include energy and computational…

Abstract

Purpose

The performance of Wireless Sensor Networks (WSNs) applications is bounded by the limited resources of battery-enabled Sensor Nodes (SNs), which include energy and computational power; the combination of which existing research seldom focuses on. Although bio-inspired algorithms provide a way to control energy usage by finding optimal routing paths, those which converge slower require even more computational power, which altogether degrades the overall lifetime of SNs.

Design/methodology/approach

Hence, two novel routing protocols are proposed using the Red-Deer Algorithm (RDA) in a WSN scenario, namely Horizontal PEG-RDA Equal Clustering and Horizontal PEG-RDA Unequal Clustering, to address the limited computational power of SNs. Clustering, data aggregation and multi-hop transmission are also integrated to improve energy usage. Unequal clustering is applied in the second protocol to mitigate the hotspot problem in Horizontal PEG-RDA Equal Clustering.

Findings

Comparisons with the well-founded Ant Colony Optimisation (ACO) algorithm reveal that RDA converges faster by 85 and 80% on average when the network size and node density are varied, respectively. Furthermore, 33% fewer packets are lost using the unequal clustering approach which also makes the network resilient to node failures. Improvements in terms of residual energy and overall network lifetime are also observed.

Originality/value

Proposal of a bio-inspired algorithm, namely the RDA to find optimal routing paths in WSN and to enhance convergence rate and execution time against the well-established ACO algorithm. Creation of a novel chain cluster-based routing protocol using RDA, named Horizontal PEG-RDA Equal Clustering. Design of an unequal clustering equivalent of the proposed Horizontal PEG-RDA Equal Clustering protocol to tackle the hotspot problem, which enhances residual energy and overall network lifetime, as well as minimises packet loss.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 7 March 2018

Natasha Ramluckun and Vandana Bassoo

With the increasing acclaim of Wireless Sensor Networks and its diverse applications, research has been directed into optimising and prolonging the network lifetime. Energy…

Abstract

With the increasing acclaim of Wireless Sensor Networks and its diverse applications, research has been directed into optimising and prolonging the network lifetime. Energy efficiency has been a critical factor due to the energy resource impediment of batteries in sensor nodes. The proposed routing algorithm therefore aims at extending lifetime of sensors by enhancing load distribution in the network. The scheme is based on the chain-based routing technique of the PEGASIS (Power Energy GAthering in Sensor Information Systems) protocol and uses Ant Colony Optimisation to obtain the optimal chain. The contribution of the proposed work is the integration of the clustering method to PEGASIS with Ant Colony Optimisation to reduce redundancy of data, neighbour nodes distance and transmission delay associated with long links, and the employment an appropriate cluster head selection method. Simulation results indicates proposed method’s superiority in terms of residual energy along with considerable improvement regarding network lifetime, and significant reduction in delay when compared with existing PEGASIS protocol and optimised PEG-ACO chain respectively.

Details

Applied Computing and Informatics, vol. 16 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 4 December 2018

Daxin Tian, Weiqiang Gong, Wenhao Liu, Xuting Duan, Yukai Zhu, Chao Liu and Xin Li

This paper aims to introduce vehicular network platform, routing and broadcasting methods and vehicular positioning enhancement technology, which are three aspects of the…

1705

Abstract

Purpose

This paper aims to introduce vehicular network platform, routing and broadcasting methods and vehicular positioning enhancement technology, which are three aspects of the applications of intelligent computing in vehicular networks. From this paper, the role of intelligent algorithm in the field of transportation and the vehicular networks can be understood.

Design/methodology/approach

In this paper, the authors introduce three different methods in three layers of vehicle networking, which are data cleaning based on machine learning, routing algorithm based on epidemic model and cooperative localization algorithm based on the connect vehicles.

Findings

In Section 2, a novel classification-based framework is proposed to efficiently assess the data quality and screen out the abnormal vehicles in database. In Section 3, the authors can find when traffic conditions varied from free flow to congestion, the number of message copies increased dramatically and the reachability also improved. The error of vehicle positioning is reduced by 35.39% based on the CV-IMM-EKF in Section 4. Finally, it can be concluded that the intelligent computing in the vehicle network system is effective, and it will improve the development of the car networking system.

Originality/value

This paper reviews the research of intelligent algorithms in three related areas of vehicle networking. In the field of vehicle networking, these research results are conducive to promoting data processing and algorithm optimization, and it may lay the foundation for the new methods.

Details

Journal of Intelligent and Connected Vehicles, vol. 1 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 30 April 2021

Mohamed Abbas and Nasser Otayf

The purpose of this paper is to minimize energy usage by maximizing network life in the creation of applications and protocols

1574

Abstract

Purpose

The purpose of this paper is to minimize energy usage by maximizing network life in the creation of applications and protocols

Design/methodology/approach

This paper presents a novel methodology for optimum energy consumption in wireless sensor networks. The proposed methodology introduces some protocols and logarithms that effectively contributed to reducing energy consumption in these types of networks.

Findings

The results of that comparison showed the ability of those logarithms and protocols to reduce that energy but in varying proportions. It can be concluded that a significant reduction in energy consumption approximately 50% could be obtained by the proposed methodology.

Originality/value

Here, a novel methodology for optimum energy consumption in wireless sensor networks has been introduced.

Details

Frontiers in Engineering and Built Environment, vol. 1 no. 1
Type: Research Article
ISSN: 2634-2499

Keywords

Open Access
Article
Publication date: 18 April 2023

Patience Mpofu, Solomon Hopewell Kembo, Marlvern Chimbwanda, Saulo Jacques, Nevil Chitiyo and Kudakwashe Zvarevashe

In response to food supply constraints resulting from coronavirus disease 2019 (COVID-19) restrictions, in the year 2020, the project developed automated household Aquaponics…

Abstract

Purpose

In response to food supply constraints resulting from coronavirus disease 2019 (COVID-19) restrictions, in the year 2020, the project developed automated household Aquaponics units to guarantee food self-sufficiency. However, the automated aquaponics solution did not fully comply with data privacy and portability best practices to protect the data of household owners. The purpose of this study is to develop a data privacy and portability layer on top of the previously developed automated Aquaponics units.

Design/methodology/approach

Design Science Research (DSR) is the research method implemented in this study.

Findings

General Data Protection and Privacy Regulations (GDPR)-inspired principles empowering data subjects including data minimisation, purpose limitation, storage limitation as well as integrity and confidentiality can be implemented in a federated learning (FL) architecture using Pinecone Matrix home servers and edge devices.

Research limitations/implications

The literature reviewed for this study demonstrates that the GDPR right to data portability can have a positive impact on data protection by giving individuals more control over their own data. This is achieved by allowing data subjects to obtain their personal information from a data controller in a format that makes it simple to reuse it in another context and to transmit this information freely to any other data controller of their choice. Data portability is not strictly governed or enforced by data protection laws in the developing world, such as Zimbabwe's Data Protection Act of 2021.

Practical implications

Privacy requirements can be implemented in end-point technology such as smartphones, microcontrollers and single board computer clusters enabling data subjects to be incentivised whilst unlocking the value of their own data in the process fostering competition among data controllers and processors.

Originality/value

The use of end-to-end encryption with Matrix Pinecone on edge endpoints and fog servers, as well as the practical implementation of data portability, are currently not adequately covered in the literature. The study acts as a springboard for a future conversation on the topic.

Details

International Journal of Industrial Engineering and Operations Management, vol. 5 no. 2
Type: Research Article
ISSN: 2690-6090

Keywords

Open Access
Article
Publication date: 8 March 2023

Fawaz Qasem, Mukhtar Ghaleb, Hassan Saleh Mahdi, Ahmed Al Khateeb and Hind Al Fadda

Based on an experimental study on English for Specific Purposes (ESP) students, at the Business Department at the University of Bisha, the purpose of the study is to examine the…

3281

Abstract

Purpose

Based on an experimental study on English for Specific Purposes (ESP) students, at the Business Department at the University of Bisha, the purpose of the study is to examine the effect of chatbot use on learning ESP in online classrooms during COVID-19 and find out how Dialogflow chabot can be a useful and interactive online platform to help ESP learners in learning vocabulary well.

Design/methodology/approach

The research paper is based on an experimental study of two groups, an experiential group and a controlled group. Two tests were carried out. Pre-tests and post-test of vocabulary knowledge were conducted for both groups to explore the usefulness of using the Dialogflow chatbot in learning ESP vocabulary. A designed chatbot content was prepared and included all the vocabulary details related to words' synonyms and a brief explanation of words’ meanings. An informal interview is another tool used in the study. The purpose of using the interview with the participants was to elicit more data from the participants about using the chatbot and about how and in what aspects chatbot using the conversational program was useful and productive.

Findings

The findings of the study explored that the use of chatbots plays a major role in enhancing and learning ESP vocabulary. That was clear as the results showed that the students who used the chatbot Dialogflow in the experimental group outperformed their counterparts in the control group.

Research limitations/implications

The study displays an important pedagogical implication as the use of chatbots could be applied in several settings to improve language learning in general or learning ESP courses in particular. Chatbot creates an interesting environment to foster build good interactions where negotiation of meaning takes place clearly seems to be of great benefit to help learners advance in their L2 lexical development.

Originality/value

Examining and exploring whether the use of chatbots plays a major role in enhancing and learning ESP vocabulary in English as Foreign Language setting.

Details

Saudi Journal of Language Studies, vol. 3 no. 2
Type: Research Article
ISSN: 2634-243X

Keywords

Open Access
Article
Publication date: 29 July 2020

Walaa M. El-Sayed, Hazem M. El-Bakry and Salah M. El-Sayed

Wireless sensor networks (WSNs) are periodically collecting data through randomly dispersed sensors (motes), which typically consume high energy in radio communication that mainly…

1326

Abstract

Wireless sensor networks (WSNs) are periodically collecting data through randomly dispersed sensors (motes), which typically consume high energy in radio communication that mainly leans on data transmission within the network. Furthermore, dissemination mode in WSN usually produces noisy values, incorrect measurements or missing information that affect the behaviour of WSN. In this article, a Distributed Data Predictive Model (DDPM) was proposed to extend the network lifetime by decreasing the consumption in the energy of sensor nodes. It was built upon a distributive clustering model for predicting dissemination-faults in WSN. The proposed model was developed using Recursive least squares (RLS) adaptive filter integrated with a Finite Impulse Response (FIR) filter, for removing unwanted reflections and noise accompanying of the transferred signals among the sensors, aiming to minimize the size of transferred data for providing energy efficient. The experimental results demonstrated that DDPM reduced the rate of data transmission to ∼20%. Also, it decreased the energy consumption to 95% throughout the dataset sample and upgraded the performance of the sensory network by about 19.5%. Thus, it prolonged the lifetime of the network.

Details

Applied Computing and Informatics, vol. 19 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

1 – 10 of 338