Search results

1 – 10 of 600
Article
Publication date: 26 December 2023

Yan Li, Ming K. Lim, Weiqing Xiong, Xingjun Huang, Yuhe Shi and Songyi Wang

Recently, electric vehicles have been widely used in the cold chain logistics sector to reduce the effects of excessive energy consumption and to support environmental…

Abstract

Purpose

Recently, electric vehicles have been widely used in the cold chain logistics sector to reduce the effects of excessive energy consumption and to support environmental friendliness. Considering the limited battery capacity of electric vehicles, it is vital to optimize battery charging during the distribution process.

Design/methodology/approach

This study establishes an electric vehicle routing model for cold chain logistics with charging stations, which will integrate multiple distribution centers to achieve sustainable logistics. The suggested optimization model aimed at minimizing the overall cost of cold chain logistics, which incorporates fixed, damage, refrigeration, penalty, queuing, energy and carbon emission costs. In addition, the proposed model takes into accounts factors such as time-varying speed, time-varying electricity price, energy consumption and queuing at the charging station. In the proposed model, a hybrid crow search algorithm (CSA), which combines opposition-based learning (OBL) and taboo search (TS), is developed for optimization purposes. To evaluate the model, algorithms and model experiments are conducted based on a real case in Chongqing, China.

Findings

The result of algorithm experiments illustrate that hybrid CSA is effective in terms of both solution quality and speed compared to genetic algorithm (GA) and particle swarm optimization (PSO). In addition, the model experiments highlight the benefits of joint distribution over individual distribution in reducing costs and carbon emissions.

Research limitations/implications

The optimization model of cold chain logistics routes based on electric vehicles provides a reference for managers to develop distribution plans, which contributes to the development of sustainable logistics.

Originality/value

In prior studies, many scholars have conducted related research on the subject of cold chain logistics vehicle routing problems and electric vehicle routing problems separately, but few have merged the above two subjects. In response, this study innovatively designs an electric vehicle routing model for cold chain logistics with consideration of time-varying speeds, time-varying electricity prices, energy consumption and queues at charging stations to make it consistent with the real world.

Details

Industrial Management & Data Systems, vol. 124 no. 3
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 13 October 2023

Mengdi Zhang, Aoxiang Chen, Zhiheng Zhao and George Q. Huang

This research explores mitigating carbon emissions and integrating sustainability in e-commerce logistics by optimizing the multi-depot pollution routing problem with time windows…

Abstract

Purpose

This research explores mitigating carbon emissions and integrating sustainability in e-commerce logistics by optimizing the multi-depot pollution routing problem with time windows (MDPRPTW). A proposed model contrasts non-collaborative and collaborative decision-making for order assignment among logistics service providers (LSPs), incorporating low-carbon considerations.

Design/methodology/approach

The model is substantiated using improved adaptive large neighborhood search (IALNS), tabu search (TS) and oriented ant colony algorithm (OACA) within the context of e-commerce logistics. For model validation, a normal distribution is employed to generate random demand and inputs, derived from the location and requirements files of LSPs.

Findings

This research validates the efficacy of e-commerce logistics optimization and IALNS, TS and OACA algorithms, especially when demand follows a normal distribution. It establishes that cooperation among LSPs can substantially reduce carbon emissions and costs, emphasizing the importance of integrating sustainability in e-commerce logistics optimization.

Research limitations/implications

This paper proposes a meta-heuristic algorithm to solve the NP-hard problem. Methodologies such as reinforcement learning can be investigated in future work.

Practical implications

This research can help logistics managers understand the status of sustainable and cost-effective logistics operations and provide a basis for optimal decision-making.

Originality/value

This paper describes the complexity of the MDPRPTW model, which addresses both carbon emissions and cost reduction. Detailed information about the algorithm, methodology and computational studies is investigated. The research problem encompasses various practical aspects related to routing optimization in e-commerce logistics, aiming for sustainable development.

Details

Industrial Management & Data Systems, vol. 124 no. 1
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 17 May 2022

Da’ad Ahmad Albalawneh and M.A. Mohamed

Using a real-time road network combined with historical traffic data for Al-Salt city, the paper aims to propose a new federated genetic algorithm (GA)-based optimization…

Abstract

Purpose

Using a real-time road network combined with historical traffic data for Al-Salt city, the paper aims to propose a new federated genetic algorithm (GA)-based optimization technique to solve the dynamic vehicle routing problem. Using a GA solver, the estimated routing time for 300 chromosomes (routes) was the shortest and most efficient over 30 generations.

Design/methodology/approach

In transportation systems, the objective of route planning techniques has been revised from focusing on road directors to road users. As a result, the new transportation systems use advanced technologies to support drivers and provide them with the road information they need and the services they require to reduce traffic congestion and improve routing problems. In recent decades, numerous studies have been conducted on how to find an efficient and suitable route for vehicles, known as the vehicle routing problem (VRP). To identify the best route, VRP uses real-time information-acquired geographical information systems (GIS) tools.

Findings

This study aims to develop a route planning tool using ArcGIS network analyst to enhance both cost and service quality measures, taking into account several factors to determine the best route based on the users’ preferences.

Originality/value

Furthermore, developing a route planning tool using ArcGIS network analyst to enhance both cost and service quality measures, taking into account several factors to determine the best route based on the users’ preferences. An adaptive genetic algorithm (GA) is used to determine the optimal time route, taking into account factors that affect vehicle arrival times and cause delays. In addition, ArcGIS' Network Analyst tool is used to determine the best route based on the user's preferences using a real-time map.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 15 January 2024

Caroline Cipolatto Ferrão, Jorge André Ribas Moraes, Leandro Pinto Fava, João Carlos Furtado, Enio Machado, Adriane Rodrigues and Miguel Afonso Sellitto

The purpose of this study is to formulate an algorithm designed to discern the optimal routes for efficient municipal solid waste (MSW) collection.

Abstract

Purpose

The purpose of this study is to formulate an algorithm designed to discern the optimal routes for efficient municipal solid waste (MSW) collection.

Design/methodology/approach

The research method is simulation. The proposed algorithm combines heuristics derived from the constructive genetic algorithm (CGA) and tabu search (TS). The algorithm is applied in a municipality located at Southern Brazil, with 40,000 inhabitants, circa.

Findings

The implementation achieved a remarkable 25.44% reduction in daily mileage of the vehicles, resulting in savings of 150.80 km/month and 1,809.60 km/year. Additionally, it reduced greenhouse gas emissions (including fossil CO2, CH4, N2O, total CO2e and biogenic CO2) by an average of 26.15%. Moreover, it saved 39 min of daily working time.

Research limitations/implications

Further research should thoroughly analyze the feasibility of decision-making regarding planning, scheduling and scaling municipal services using digital technology.

Practical implications

The municipality now has a tool to improve public management, mainly related with municipal solid waste. The municipality reduced the cost of public management of municipal solid waste, redirecting funds to other priorities, such as public health and education.

Originality/value

The study integrates MSW collection service with an online platform based on Google MapsTM. The advantages of employing geographical information systems are agility, low cost, adaptation to changes and accuracy.

Details

Management of Environmental Quality: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 17 February 2022

Prajakta Thakare and Ravi Sankar V.

Agriculture is the backbone of a country, contributing more than half of the sector of economy throughout the world. The need for precision agriculture is essential in evaluating…

Abstract

Purpose

Agriculture is the backbone of a country, contributing more than half of the sector of economy throughout the world. The need for precision agriculture is essential in evaluating the conditions of the crops with the aim of determining the proper selection of pesticides. The conventional method of pest detection fails to be stable and provides limited accuracy in the prediction. This paper aims to propose an automatic pest detection module for the accurate detection of pests using the hybrid optimization controlled deep learning model.

Design/methodology/approach

The paper proposes an advanced pest detection strategy based on deep learning strategy through wireless sensor network (WSN) in the agricultural fields. Initially, the WSN consisting of number of nodes and a sink are clustered as number of clusters. Each cluster comprises a cluster head (CH) and a number of nodes, where the CH involves in the transfer of data to the sink node of the WSN and the CH is selected using the fractional ant bee colony optimization (FABC) algorithm. The routing process is executed using the protruder optimization algorithm that helps in the transfer of image data to the sink node through the optimal CH. The sink node acts as the data aggregator and the collection of image data thus obtained acts as the input database to be processed to find the type of pest in the agricultural field. The image data is pre-processed to remove the artifacts present in the image and the pre-processed image is then subjected to feature extraction process, through which the significant local directional pattern, local binary pattern, local optimal-oriented pattern (LOOP) and local ternary pattern (LTP) features are extracted. The extracted features are then fed to the deep-convolutional neural network (CNN) in such a way to detect the type of pests in the agricultural field. The weights of the deep-CNN are tuned optimally using the proposed MFGHO optimization algorithm that is developed with the combined characteristics of navigating search agents and the swarming search agents.

Findings

The analysis using insect identification from habitus image Database based on the performance metrics, such as accuracy, specificity and sensitivity, reveals the effectiveness of the proposed MFGHO-based deep-CNN in detecting the pests in crops. The analysis proves that the proposed classifier using the FABC+protruder optimization-based data aggregation strategy obtains an accuracy of 94.3482%, sensitivity of 93.3247% and the specificity of 94.5263%, which is high as compared to the existing methods.

Originality/value

The proposed MFGHO optimization-based deep-CNN is used for the detection of pest in the crop fields to ensure the better selection of proper cost-effective pesticides for the crop fields in such a way to increase the production. The proposed MFGHO algorithm is developed with the integrated characteristic features of navigating search agents and the swarming search agents in such a way to facilitate the optimal tuning of the hyperparameters in the deep-CNN classifier for the detection of pests in the crop fields.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 27 September 2022

Souad El Houssaini, Mohammed-Alamine El Houssaini and Jamal El Kafi

In vehicular ad hoc networks (VANETs), the information transmitted is broadcast in a free access environment. Therefore, VANETs are vulnerable against attacks that can directly…

Abstract

Purpose

In vehicular ad hoc networks (VANETs), the information transmitted is broadcast in a free access environment. Therefore, VANETs are vulnerable against attacks that can directly perturb the performance of the networks and then provoke big fall of capability. Black hole attack is an example such attack, where the attacker node pretends that having the shortest path to the destination node and then drops the packets. This paper aims to present a new method to detect the black hole attack in real-time in a VANET network.

Design/methodology/approach

This method is based on capability indicators that are widely used in industrial production processes. If the different capability indicators are greater than 1.33 and the stability ratio (Sr) is greater than 75%, the network is stable and the vehicles are communicating in an environment without the black hole attack. When the malicious nodes representing the black hole attacks are activated one by one, the fall of capability becomes more visible and the network is unstable, out of control and unmanaged, due to the presence of the attacks. The simulations were conducted using NS-3 for the network simulation and simulation of urban mobility for generating the mobility model.

Findings

The proposed mechanism does not impose significant overheads or extensive modifications in the standard Institute of Electrical and Electronics Engineers 802.11p or in the routing protocols. In addition, it can be implemented at any receiving node which allows identifying malicious nodes in real-time. The simulation results demonstrated the effectiveness of proposed scheme to detect the impact of the attack very early, especially with the use of the short-term capability indicators (Cp, Cpk and Cpm) of each performance metrics (throughput and packet loss ratio), which are more efficient at detecting quickly and very early the small deviations over a very short time. This study also calculated another indicator of network stability which is Sr, which allows to make a final decision if the network is under control and that the vehicles are communicating in an environment without the black hole attack.

Originality/value

According to the best of the authors’ knowledge, the method, using capability indicators for detecting the black hole attack in VANETs, has not been presented previously in the literature.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 5
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 13 February 2024

Amer Jazairy, Emil Persson, Mazen Brho, Robin von Haartman and Per Hilletofth

This study presents a systematic literature review (SLR) of the interdisciplinary literature on drones in last-mile delivery (LMD) to extrapolate pertinent insights from and into…

Abstract

Purpose

This study presents a systematic literature review (SLR) of the interdisciplinary literature on drones in last-mile delivery (LMD) to extrapolate pertinent insights from and into the logistics management field.

Design/methodology/approach

Rooting their analytical categories in the LMD literature, the authors performed a deductive, theory refinement SLR on 307 interdisciplinary journal articles published during 2015–2022 to integrate this emergent phenomenon into the field.

Findings

The authors derived the potentials, challenges and solutions of drone deliveries in relation to 12 LMD criteria dispersed across four stakeholder groups: senders, receivers, regulators and societies. Relationships between these criteria were also identified.

Research limitations/implications

This review contributes to logistics management by offering a current, nuanced and multifaceted discussion of drones' potential to improve the LMD process together with the challenges and solutions involved.

Practical implications

The authors provide logistics managers with a holistic roadmap to help them make informed decisions about adopting drones in their delivery systems. Regulators and society members also gain insights into the prospects, requirements and repercussions of drone deliveries.

Originality/value

This is one of the first SLRs on drone applications in LMD from a logistics management perspective.

Details

The International Journal of Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 16 January 2023

Faisal Lone, Harsh Kumar Verma and Krishna Pal Sharma

The purpose of this study is to extensively explore the vehicular network paradigm, challenges faced by them and provide a reasonable solution for securing these vulnerable…

Abstract

Purpose

The purpose of this study is to extensively explore the vehicular network paradigm, challenges faced by them and provide a reasonable solution for securing these vulnerable networks. Vehicle-to-everything (V2X) communication has brought the long-anticipated goal of safe, convenient and sustainable transportation closer to reality. The connected vehicle (CV) paradigm is critical to the intelligent transportation systems vision. It imagines a society free of a troublesome transportation system burdened by gridlock, fatal accidents and a polluted environment. The authors cannot overstate the importance of CVs in solving long-standing mobility issues and making travel safer and more convenient. It is high time to explore vehicular networks in detail to suggest solutions to the challenges encountered by these highly dynamic networks.

Design/methodology/approach

This paper compiles research on various V2X topics, from a comprehensive overview of V2X networks to their unique characteristics and challenges. In doing so, the authors identify multiple issues encountered by V2X communication networks due to their open communication nature and high mobility, especially from a security perspective. Thus, this paper proposes a trust-based model to secure vehicular networks. The proposed approach uses the communicating nodes’ behavior to establish trustworthy relationships. The proposed model only allows trusted nodes to communicate among themselves while isolating malicious nodes to achieve secure communication.

Findings

Despite the benefits offered by V2X networks, they have associated challenges. As the number of CVs on the roads increase, so does the attack surface. Connected cars provide numerous safety-critical applications that, if compromised, can result in fatal consequences. While cryptographic mechanisms effectively prevent external attacks, various studies propose trust-based models to complement cryptographic solutions for dealing with internal attacks. While numerous trust-based models have been proposed, there is room for improvement in malicious node detection and complexity. Optimizing the number of nodes considered in trust calculation can reduce the complexity of state-of-the-art solutions. The theoretical analysis of the proposed model exhibits an improvement in trust calculation, better malicious node detection and fewer computations.

Originality/value

The proposed model is the first to add another dimension to trust calculation by incorporating opinions about recommender nodes. The added dimension improves the trust calculation resulting in better performance in thwarting attacks and enhancing security while also reducing the trust calculation complexity.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 3 January 2024

Miao Ye, Lin Qiang Huang, Xiao Li Wang, Yong Wang, Qiu Xiang Jiang and Hong Bing Qiu

A cross-domain intelligent software-defined network (SDN) routing method based on a proposed multiagent deep reinforcement learning (MDRL) method is developed.

Abstract

Purpose

A cross-domain intelligent software-defined network (SDN) routing method based on a proposed multiagent deep reinforcement learning (MDRL) method is developed.

Design/methodology/approach

First, the network is divided into multiple subdomains managed by multiple local controllers, and the state information of each subdomain is flexibly obtained by the designed SDN multithreaded network measurement mechanism. Then, a cooperative communication module is designed to realize message transmission and message synchronization between the root and local controllers, and socket technology is used to ensure the reliability and stability of message transmission between multiple controllers to acquire global network state information in real time. Finally, after the optimal intradomain and interdomain routing paths are adaptively generated by the agents in the root and local controllers, a network traffic state prediction mechanism is designed to improve awareness of the cross-domain intelligent routing method and enable the generation of the optimal routing paths in the global network in real time.

Findings

Experimental results show that the proposed cross-domain intelligent routing method can significantly improve the network throughput and reduce the network delay and packet loss rate compared to those of the Dijkstra and open shortest path first (OSPF) routing methods.

Originality/value

Message transmission and message synchronization for multicontroller interdomain routing in SDN have long adaptation times and slow convergence speeds, coupled with the shortcomings of traditional interdomain routing methods, such as cumbersome configuration and inflexible acquisition of network state information. These drawbacks make it difficult to obtain global state information about the network, and the optimal routing decision cannot be made in real time, affecting network performance. This paper proposes a cross-domain intelligent SDN routing method based on a proposed MDRL method. First, the network is divided into multiple subdomains managed by multiple local controllers, and the state information of each subdomain is flexibly obtained by the designed SDN multithreaded network measurement mechanism. Then, a cooperative communication module is designed to realize message transmission and message synchronization between root and local controllers, and socket technology is used to ensure the reliability and stability of message transmission between multiple controllers to realize the real-time acquisition of global network state information. Finally, after the optimal intradomain and interdomain routing paths are adaptively generated by the agents in the root and local controllers, a prediction mechanism for the network traffic state is designed to improve awareness of the cross-domain intelligent routing method and enable the generation of the optimal routing paths in the global network in real time. Experimental results show that the proposed cross-domain intelligent routing method can significantly improve the network throughput and reduce the network delay and packet loss rate compared to those of the Dijkstra and OSPF routing methods.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 10 October 2022

Nidhi Sharma and Ravindara Bhatt

Privacy preservation is a significant concern in Internet of Things (IoT)-enabled event-driven wireless sensor networks (WSNs). Low energy utilization in the event-driven system…

Abstract

Purpose

Privacy preservation is a significant concern in Internet of Things (IoT)-enabled event-driven wireless sensor networks (WSNs). Low energy utilization in the event-driven system is essential if events do not happen. When events occur, IoT-enabled sensor network is required to deal with enormous traffic from the concentration of demand data delivery. This paper aims to explore an effective framework for safeguarding privacy at source in event-driven WSNs.

Design/methodology/approach

This paper discusses three algorithms in IoT-enabled event-driven WSNs: source location privacy for event detection (SLP_ED), chessboard alteration pattern (SLP_ED_CBA) and grid-based source location privacy (GB_SLP). Performance evaluation is done using simulation results and security analysis of the proposed scheme.

Findings

The sensors observe bound events or sensitive items within the network area in the field of interest. The open wireless channel lets an opponent search traffic designs, trace back and reach the start node or the event-detecting node. SLP_ED and SLP_ED_CBA provide better safety level results than dynamic shortest path scheme and energy-efficient source location privacy protection schemes. This paper discusses security analysis for the GB_SLP. Comparative analysis shows that the proposed scheme is more efficient on safety level than existing techniques.

Originality/value

The authors develop the privacy protection scheme in IoT-enabled event-driven WSNs. There are two categories of occurrences: nominal events and critical events. The choice of the route from source to sink relies on the two types of events: nominal or critical; the privacy level required for an event; and the energy consumption needed for the event. In addition, phantom node selection scheme is designed for source location privacy.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 5
Type: Research Article
ISSN: 1742-7371

Keywords

1 – 10 of 600